Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 114-122    DOI: 10.11720/wtyht.2022.1328
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于曲波稀疏变换的拉伸校正方法
刘仕友1(), 张明林2, 宋维琪2
1.中海石油(中国)有限公司 海南分公司,海南 海口 570311
2.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
Stretch correction method based on Curvelet sparse transform
LIU Shi-You1(), ZHANG Ming-Lin2, SONG Wei-Qi2
1. Hainan Branch of CNOOC (China) Co.,Ltd., Haikou 570311, China
2. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
全文: PDF(8528 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

动校正是地震数据处理中的重要步骤,但它在校正过程中会产生子波拉伸畸变效应,随着偏移距的增大,会出现主频降低、振幅扩大的现象。由于存在拉伸畸变,同相轴未被拉平,导致非同相叠加,会引起水平叠加剖面的频率失真和分辨率下降,因此,拉伸校正是提高水平叠加剖面分辨率的关键。子波拉伸畸变在曲波稀疏域中是不相干的,可以将拉伸校正视为是一个非线性优化过程。通过度量稀疏域中数据的稀疏性,使用一种快速有效的算法,来优化子波拉伸畸变生成的非线性问题,最终实现消除子波拉伸畸变的目的。曲波稀疏变换拉伸校正方法能够消除由动校正带来的子波拉伸畸变,恢复远偏移距处的高频信息,校平同相轴。综合模型数据和实际资料处理,曲波稀疏拉伸校正方法能够显著提高水平叠加剖面的分辨率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘仕友
张明林
宋维琪
关键词 叠前道集处理拉伸校正曲波变换稀疏重建    
Abstract

NMO correction is an important step in seismic data processing, but it will produce the wavelet stretching distortion effect in the process of correction. With the increase of offset, the dominant frequency will decrease and the amplitude will increase.Due to stretch distortion, the in-phase axis is not leveled, leading to non-in-phase stacking, which will lead to frequency distortion and resolution decrease of horizontal stacking profile. Therefore, stretch correction is the key to improve the resolution of horizontal stacking profile.The stretching distortion of wavelet is incoherent in the curved sparse domain, and the stretching correction can be regarded as a nonlinear optimization process.By measuring the sparsity of the data in the sparse domain, a fast and effective algorithm is used to optimize the nonlinear problem generated by the wavelet stretching distortion, and finally the purpose of eliminating the wavelet stretching distortion is realized.The curved sparse transform stretching correction method can eliminate the wavelet stretching distortion caused by NMO correction, recover the high frequency information at the far offset and level the in-phase axis.Combining model data and actual data processing, the curved wave sparse stretch correction method can significantly improve the resolution of horizontal superposition profile.

Key wordspre-stack gather processing    stretch correction    curvelet transform    sparse reconstruction
收稿日期: 2021-06-15      修回日期: 2021-11-26      出版日期: 2022-02-20
ZTFLH:  P631.4  
基金资助:中海石油(中国)有限公司重大科技项目“南海西部油田上产2000万方关键技术研究”(CNOOC-KJ135ZDXM38ZJ02ZJ)
作者简介: 刘仕友(1982-),男,高级工程师,2007 年毕业于中国石油大学(华东),主要从事储层预测及烃类检测工作。Email: liushiyou@139.com
引用本文:   
刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
LIU Shi-You, ZHANG Ming-Lin, SONG Wei-Qi. Stretch correction method based on Curvelet sparse transform. Geophysical and Geochemical Exploration, 2022, 46(1): 114-122.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1328      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/114
层位 纵波速度vp
/(m·s-1)
横波速度vs
/(m·s-1)
密度ρ
/(g·cm-3)
1 3500 2500 2.0
2 4000 3000 2.5
Table 1  模型一层状介质参数
Fig.1  测试模型一
a—合成地震记录;b—常规动校正结果;c—曲波稀疏拉伸校正结果;d—原始地震记录振幅谱;e—动校正结果振幅谱;f—本文方法拉伸校正结果振幅谱
层位 速度v/(m·s-1) 密度ρ/(g·cm-3)
1 3500 1.3
2 4000 1.5
3 5000 2.0
4 5500 2.2
Table 2  模型二层状介质参数
Fig.2  测试模型二(不含随机噪声)
a—合成地震记录;b—常规动校正结果;c—曲波稀疏拉伸校正结果;d—动校正结果振幅谱;e—本文方法拉伸校正结果振幅谱
Fig.3  测试模型二(含随机噪声)
a—合成地震记录;b—常规动校正结果;c—曲波稀疏拉伸校正结果;d—原始地震记录振幅谱;e—动校正结果振幅谱;f—本文方法拉伸校正结果振幅谱
层位 速度v/(m·s-1) 密度ρ/(g·cm-3)
1 4000 1.6
2 6000 2.2
3 5000 1.8
4 5500 2.0
Table 3  模型三水平层状介质参数
Fig.4  测试模型三
a—合成地震记录;b—常规动校正结果;c—曲波稀疏拉伸校正结果;d—动校正结果振幅谱;e—本文方法拉伸校正结果振幅谱
Fig.5  实际地震资料处理结果
a—原始CRP道集;b—常规动校正结果;c—曲波稀疏拉伸动校正结果
Fig.6  拉伸校正前后频谱对比
a—远道原始CRP道集和动校正结果频谱对比;b—远道原始CRP道集和曲波稀疏拉伸校正结果频谱对比
Fig.7  叠加剖面
a—常规动校正叠加剖面;b—曲波稀疏拉伸校正叠加剖面
[1] 夏洪瑞, 葛川庆, 邹少峰. 动校拉伸现象分析及其消除[J]. 石油物探, 2005,44(3):220-224.
[1] Xia H R, Ge C Q, Zou S F. Analysis and elimination of stretch phenomenon in dynamic school[J]. Geophysical Prospecting for Petroleum, 2005,44(3):220-224.
[2] 赵小龙, 吴国忱. 基于非稳态匹配的角度域叠前道集去调谐方法[J]. 物探与化探, 2017,41(1):141-146.
[2] Zhao X L, Wu G C. Angle domain prestack gather detuning method based on unsteady matching[J]. Geophysical and Geochemical Exploration, 2017,41(1):141-146.
[3] 孙成禹, 谢俊法, 闫月锋. 一种无拉伸畸变的动校正方法[J]. 石油物探, 2016,55(5):664-673.
[3] Sun C Y, Xie J F, Yan Y F. A dynamic correction method without stretching distortion[J]. Geophysical Prospecting for Petroleum, 2016,55(5):664-673.
[4] Rupert G B, Chun J H. The block move sum normal moveout correction[J]. Geophysics, 1975,40(1):17-24.
doi: 10.1190/1.1440511
[5] Shatilo A, Aminzadeh F. Constant normal-moveout (CNMO) correction: a technique and test results[J]. Geophysical Prospecting, 2000: 48.
[6] Hicks G J. Removing NMO stretch using the Radon and Fourier-Radon transforms[C]//63rd EAGE Conference & Exhibition, 2001.
[7] Trickett S. Stretch-free stacking[C]//73rd Annual International Meeting,SEG,Expanded Abstracts, 1949: 4645.
[8] 崔宝文, 王维红. 频谱代换无拉伸动校正方法研究[J]. 地球物理学进展, 2007,22(3):960-965.
[8] Cui B W, Wang W H. Study on spectrum substitution non stretching NMO method[J]. Progress in Geophysics, 2007,22(3):960-965.
[9] Kazemi N, Siahkoohi H R. Local stretch zeroing NMO correction[J]. Geophysical Journal International, 2014,188(1):123-130.
doi: 10.1111/gji.2012.188.issue-1
[10] Zhang B, Zhang K, Guo S, et al. Nonstretching NMO correction of prestack time-migrated gathers using a matching-pursuit algorithm[J]. Geophysics, 2013,78(1):U9-U18.
doi: 10.1190/geo2011-0509.1
[11] Abedi M M, Riahi M A. Nonhyperbolic stretch-free normal moveout correction[J]. Geophysics, 2016,81(6):U87-U95.
doi: 10.1190/geo2016-0078.1
[12] Zhang F, Lan N. Seismic gather wavelet stretching correction based on multi-wavelet decomposition algorithm[J]. Geophysics, 2020,85(5):1-33.
doi: 10.1190/geo2018-0881.1
[13] Barnes A E. Another look at NMO stretch[J]. Geophysics, 2012,57(5):749.
doi: 10.1190/1.1443289
[14] Buchholtz H. A note on signal distortion due to dynamic (NMO) corrections[J]. Geophysical Prospecting, 1972,20(2):395-402.
doi: 10.1111/gpr.1972.20.issue-2
[15] Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Comm. Pure Appl. Math., 2005,59(8):1-15.
doi: 10.1002/(ISSN)1097-0312
[16] 罗勇, 毛海波, 杨晓海, 等. 基于双重稀疏表示的地震资料随机噪声衰减方法[J]. 物探与化探, 2018,42(3):608-615.
[16] Luo Y, Mao H B, Yang X H, et al. Random noise attenuation method for seismic data based on double sparse representation[J]. Geophysical and Geochemical Exploration, 2018,42(3):608-615.
[17] Herrmann F J, Moghaddam P, Stolk C C. Sparsity- and continuity-promoting seismic image recovery with curvelet frames[J]. Applied & Computational Harmonic Analysis, 2008,24(2):150-173.
[18] Gholami A. Residual statics estimation by sparsity maximization[J]. Geophysics, 2013,78(1):V11-V19.
doi: 10.1190/geo2012-0035.1
[19] Gholami A, Hosseini S M. A general framework for sparsity based denoising and inversion[J]. IEEE Transactions on Signal Processing, 2011,59(11):5202-5211.
doi: 10.1109/TSP.2011.2164074
[1] 张杨, 王君恒, 曹炼鹏, 冯裕华, 朱江皇, 付强. 曲波变换在位场信号提取中的应用研究[J]. 物探与化探, 2021, 45(1): 84-94.
[2] 徐卫, 张华, 张落毅. 基于复值曲波变换的地震数据重建方法[J]. 物探与化探, 2016, 40(4): 750-756.
[3] 何柯, 周丽萍, 于宝利, 邓勇, 王丽丽, 王茜. 基于补偿阈值的曲波变换地面微地震弱信号检测方法[J]. 物探与化探, 2016, 40(1): 55-60.
[4] 薛永安, 王勇, 李红彩, 陆树勤. 改进的曲波变换及全变差联合去噪技术[J]. 物探与化探, 2014, 38(1): 81-86.
[5] 冯飞, 王德利, 张亚红, 刘伟明, 朱恒. 结合曲波变换的焦点变换 在地震数据去噪和插值中的应用[J]. 物探与化探, 2013, 37(3): 480-487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com