Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (6): 1512-1519    DOI: 10.11720/wtyht.2021.0053
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
微动勘探技术在城市地面沉降检测中的应用研究
徐浩1,2(), 吴小平1, 盛勇2, 廖圣柱2, 贾慧涛2, 徐子桥2
1.中国科学技术大学 地球与空间科学学院,安徽 合肥 230026
2.安徽省地球物理地球化学勘查技术院,安徽 合肥 230022
Application of microtremor survey method in detection of urban land subsidence
XU Hao1,2(), WU Xiao-Ping1, SHENG Yong2, LIAO Sheng-Zhu2, JIA Hui-Tao2, XU Zi-Qiao2
1. School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China
2. Anhui Institute of Geophysical and Geochemical Prospecting Techniques,Hefei 230022,China
全文: PDF(7432 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

城市地面沉降极易导致地面裂缝甚至塌陷,引发安全事故。城市环境中,人文干扰强烈,安全、环保要求高,导致传统物探方法无法在城市中有效开展。微动勘探技术是一种无源、高效、环境友好的物探方法,且能够在城市强干扰环境下对地下地质情况进行探测。选取合肥市谢岗小学作为研究场地,重点探究微动方法在地面沉降原因探测方面的适用性和有效性。根据采集到的微动数据,采用F-K法进行频散曲线提取,再进行反演得到地下横波速度结构,进而了解地下地质情况,最后采取钻探进行验证。研究结果表明:微动勘探技术可以有效地探测出地下不密实土体的位置、规模等信息,从而排除沉降区二次事故的发生。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐浩
吴小平
盛勇
廖圣柱
贾慧涛
徐子桥
关键词 微动勘探城市地面沉降不密实体沉降原因F-K法城市地质    
Abstract

Urban land subsidence is liable to induce ground fractures or even collapse,thus causing safety accidents.However,traditional geophysical methods cannot be applied in cities due to the strong human interference and high requirements for safety and environmental protection in the urban environment.The microtremor survey method is a passive,efficient,and environment-friendly geophysical method and it can be used to detect the underground geological conditions in the urban environment with strong interference.Taking Xiegang Primary School in Hefei City as the research site,this paper focuses on the applicability and effectiveness of the microtremor survey method in detecting the causes of land subsidence.Based on the microtremor survey data collected,the dispersion curve was extracted using the F-K method and then the underground shear wave velocity structure was obtained through inversion,thus revealing the underground geological conditions.Finally,verification was conducted through drilling.The results show that the microtremor survey is an effective geophysical method for detecting the information such as the position and scale of underground unconsolidated soil,and thus the secondary accidents in subsidence areas can be eliminated.

Key wordsmicrotremor survey    urban land subsidence    unconsolidated soil    land subsidence reason    F-K method    urban geology
收稿日期: 2021-01-26      修回日期: 2021-09-10      出版日期: 2021-12-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(41874084)
作者简介: 徐浩(1985-),男,博士在读,主要从事地球物理及其在水工环地质中的应用、研究工作。Email: xuhao926@mail.ustc.edu.cn
引用本文:   
徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
XU Hao, WU Xiao-Ping, SHENG Yong, LIAO Sheng-Zhu, JIA Hui-Tao, XU Zi-Qiao. Application of microtremor survey method in detection of urban land subsidence. Geophysical and Geochemical Exploration, 2021, 45(6): 1512-1519.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.0053      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I6/1512
Fig.1  微动勘探技术原理示意
Fig.2  F-K法提取面波频散流程示意
Fig.3  研究区内沉降开裂情况
Fig.4  微动勘探点及验证钻孔分布
Fig.5  7点直线型微动台阵示意
Fig.6  7号剖面12号点的原始波形(a)及频散曲线(b)
Fig.7  研究区工程地质剖面
Fig.8  微动勘探7号剖面异常图(a)及钻孔JZ5验证实物照片(b)
Fig.9  微动勘探5号剖面异常图(a)及钻孔JZ4验证实物照片(b)
[1] 熊鹏, 左小清, 李勇发, 等. 双极化Sentinel-1数据在昆明市沉降监测中的应用[J]. 地球物理学进展, 2020, 35(4):1317-1322.
[1] Xiong P, Zuo X Q, Li Y F, et al. Application of dual-polarized Sentinel-1 data to subsidence monitoring in Kunming[J]. Progress in Geophysics, 2020, 35(4):1317-1322.
[2] 吕敦玉, 余楚, 侯宏冰, 等. 国外城市地质工作进展与趋势及其对我国的启示[J]. 现代地质, 2015, 29(2):373-379.
[2] Lyu D Y, Yu C, Hou H B, et al. Development and trends of foreign urban geological work and its enlightenment to China[J]. Geoscience, 2015, 29(2):373-379.
[3] 王义梅, 罗小军, 于冰, 等. 郑州市地面沉降InSAR监测[J]. 测绘科学, 2019, 44(9):100-106.
[3] Wang Y M, Luo X J, Yu B, et al. Monitoring ground subsidence in Zhengzhou with InSAR[J]. Science of Surveying and Mapping, 2019, 44(9):100-106.
[4] 熊佳诚, 聂运菊, 罗跃, 等. 利用双极化Sentinel-1数据监测城市地面沉降——以上海市为例[J]. 测绘通报, 2019(11):98-102.
[4] Xiong J C, Nie Y J, Luo Y, et al. Monitoring urban land subsidence by dual-polarization Sentinel-1 data:A case study of Shanghai[J]. Bull. Surv. Map., 2019(11):98-102.
[5] 朱邦彦, 姚冯宇, 孙静雯, 等. 利用InSAR与地质数据综合分析南京河西地面沉降的演化特征和成因[J]. 武汉大学学报:信息科学版, 2020, 45(3):442-450.
[5] Zhu B Y, Yao F Y, Sun J W, et al. Attribution analysis on land subsidence feature in Hexi area of Nanjing by InSAR and geological data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3):442-450.
[6] 井研, 胡庆武, 艾明耀, 等. 基于离散沉降观测的城市地面沉降监测[J]. 地理空间信息, 2016, 14(11):84-87.
[6] Jing Y, Hu Q W, Ai M Y, et al. Research on urban ground settlement monitoring based on discrete settlement observation[J]. Geospatial Information, 2016, 14(11):84-87.
[7] 侯占东. 城市地面沉降监测数据的插值方法对比分析[J]. 地理空间信息, 2020, 18(8):106-109.
[7] Hou Z D. Comparison and analysis of the spatial interpolation methods of the urban ground subsidence monitoring data[J]. Geospatial Information, 2020, 18(8):106-109.
[8] 贾慧涛, 廖圣柱, 盛勇, 等. 微动勘探技术在城市地质工作中的应用[J]. 安徽地质, 2020, 30(1):35-38.
[8] Jia H T, Liao S Z, Sheng Y, et al. Application of microtremor exploration in urban geological work[J]. Geology of Anhui, 2020, 30(1):35-38.
[9] Aki K. Space and time spectra of stationary stochastic waves,with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35:41-456.
[10] Capon J. Application of detection and estimation theory to large array seismology[J]. Proc. IEEE, 1969, 58:760-770.
doi: 10.1109/PROC.1970.7730
[11] Katz L J. Microtremor analysis of local geological conditions[J]. Bull. Seism. Soc. Am., 1976, 66:45-60.
doi: 10.1785/BSSA0660010045
[12] Katz L J, Bellon R S. Microtremor site analysis study at Beatty,Nevada[J]. Bull. Seism. Soc. Am., 1978, 68:757-765.
doi: 10.1785/BSSA0680030757
[13] Asten M W. Comments on “Microtremor site analysis study at Beatty,Nevada” by L.J.Katz and Bellon[J]. Bull. Seism. Soc. Am., 1979, 69:1633-1635.
doi: 10.1785/BSSA0690051633
[14] Morales J, Vidal F, Pena J A, et al. Microtremor study in the sediment-filled basin of Zafarraya,Granada (Southern Spain)[J]. Bull. Seism. Soc. Am., 1991, 81:687-693.
doi: 10.1785/BSSA0810020687
[15] Okada H. The microtremor survey method[M]. Society of Exploration Geophysicists, 2003.
[16] 王振东. 微动的空间自相关法及其实用技术[J]. 物探与化探, 1986, 10(2):123-133.
[16] Wang Z D. The micromotional spatial autocorrelation method and its practical technique[J]. Geophysical and Geochemical Exploration, 1986, 10(2):123-133.
[17] 王振东. 微动应用技术讲座[J]. 国外地质勘探技术, 1990(4):12-16.
[17] Wang Z D. The micromotional technique lecture[J]. Foreign Geo-exploration Technology, 1990(4):12-16.
[18] 冉伟彦, 王振东. 长波微动法及其新进展[J]. 物探与化探, 1994, 18(1):28-34.
[18] Ran W Y, Wang Z D. The long-wave microtremors method and its advances[J]. Geophysical and Geochemical Exploration, 1994, 18(1):28-34.
[19] 曾校丰, 钱荣毅, 邓新生, 等. 面波勘探及其在沙漠地区表层地质结构调查中的应用[J]. 现代地质, 2001, 15(1):94-97.
[19] Zeng X F, Qian R Y, Deng X S, et al. Rayleigh wave explortation applied to investigate surface geological structure in desert zone[J]. Geoscience, 2001, 15(1):94-97.
[20] 冯少孔. 微动勘探技术及其在土木工程中的应用[J]. 岩土力学与工程学报, 2003, 22(6):1029-1036.
[20] Feng S K. Array microtremor survey and its application to civil engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(6):1029-1036.
[21] 叶太兰. 微动台阵探测技术及其应用研究[J]. 中国地震, 2004, 20(1):47-52.
[21] Ye T L. The exploration technique for microtremor array and its application[J]. Earthquake Research in China, 2004, 20(1):47-52.
[22] 夏加国, 高玮, 程雅星, 等. 土石混合体斜坡地质结构精细探测新途径及其应用[J]. 岩土力学, 2018, 39(8):3087-3094.
[22] Xia J G, Gao W, Cheng Y X, et al. A new approach for precise detection of the geological structure of soil-rock mixture deposit and its application[J]. Rock and Soil Mechanics, 2018, 39(8):3087-3094.
[23] 刘宏岳, 黄佳坤, 孙智勇, 等. 微动探测方法在城市地铁盾构施工“孤石”探测中的应用——以福州地铁1号线为例[J]. 隧道建设, 2016, 36(12):1500-1506.
[23] Liu H Y, Huang J K, Sun Z Y, et al. Application of microtremor method to boulders detection in urban Metro Shield construction:Case study of Fuzhou Metro Line No.1[J]. Tunnel Construction, 2016, 36(12):1500-1506.
[24] 杜亚楠, 徐佩芬, 凌甦群. 土石混合滑坡体微动探测:以衡阳拜殿乡滑坡体为例[J]. 地球物理学报, 2018, 61(4):1596-1604.
[24] Du Y N, Xu P F, Ling S Q. Microtremor survey of soil-rock mixture landslides:An example of Baidian rownship, Hengyang City[J]. Chinese Journal of Geophysics, 2018, 61(4):1596-1604.
[25] 黄光明, 赵举兴, 李长安, 等. 岩溶区地下溶洞综合物探探测试验研究——以福建省永安大湖盆地为例[J]. 地球物理学进展, 2019, 34(3):1184-1191.
[25] Huang G M, Zhao J X, Li C A, et al. Detection of underground karst caves by comprehensive geophysical exploration in karst area: taking Yongan Dahu basin in Fujian province as example[J]. Progress in Geophysics, 2019, 34(3):1184-1191.
[26] 徐兴倩, 苏立君, 和春香, 等. 基于微动信号监测的碎石土滑坡滑动面(带)探测分析[J]. 工程地球物理学报, 2019, 16(6):799-805.
[26] Xu X Q, Su L J, He C X, et al. Detection and analysis of sliding surface (zone) of gravel soil landslide based on Microtremor signal monitoring[J]. Chinese Journal of Engineering Geophysics, 2019, 16(6):799-805
[27] 董耀, 李光辉, 高鹏举, 等. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6):1345-1351.
[27] Dong Y, Li G H, Gao P J, et al. The application of fretting exploration technology in the exploration of middle and deep clean energy[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1345-1351.
[28] 章惠, 隋少强, 钱烙然, 等. 多种非震方法在山东齐河地热勘查中的应用[J]. 物探与化探, 2020, 44(4):727-733.
[28] Zhang H, Sui S Q, Qian L R, et al. The application of multiple non-seismic methods to geothermal Explortion in Qihe, Shandong Province[J]. Geophysical and Geochemical Exploration, 2020, 44(4):727-733.
[29] 张若晗, 徐佩芬, 凌甦群, 等. 基于微动H/V谱比法的土石分界面探测研究——以济南中心城区为例[J]. 地球物理学报, 2020, 63(1):339-350.
[29] Zhang R H, Xu P F, Ling S Q, et al. Detection of the Soil-rock interface based on microtremor H/V spectral ratio method: a case study of the Jinan urban area[J]. Chinese Journal of Geophysics, 2020, 63(1):339-350.
[30] 盛勇, 贾慧涛, 刘杨. 微动勘探方法技术研究及其应用[J]. 安徽地质, 2019, 29(1):34-39.
[30] Sheng Y, Jia H T, Liu Y. Study on the method and technique of microtremor survey and its application[J]. Geology of Anhui, 2019, 29(1):34-39.
[31] 徐佩芬, 李世豪, 杜建国, 等. 微动探测:地层分层和隐伏断裂构造探测的新方法[J]. 岩石学报, 2013, 29(5):1841-1845.
[31] Xu P F, Li S H, Du J G, et al. Microtremor survey method:A new geophysical method for dividing strata and detecting the buried fault structures[J]. Acta Petrologica Sinica, 2013, 29(5):1841-1845.
[32] Tokimatsu, Kohji, Shinzawa, et al. Use of short-period microtremors for Vs profiling[J]. Journal of Geotechnical Engineering ASCE, 1992, 118(10):1544-1588.
doi: 10.1061/(ASCE)0733-9410(1992)118:10(1544)
[33] 李欣欣, 李庆春. 利用改进的F-K变换法提取瑞雷波的频散曲线[J]. 地球物理学进展, 2017, 32(1):191-197.
[33] Li X X, Li Q C. Rayleigh wave dispersion curve imaging using improved F-K transform approach[J]. Progress in Geophysics, 2017, 32(1):191-197.
[34] 胡众. 合肥地铁施工安全风险分析与控制措施研究[D]. 合肥:合肥工业大学, 2019.
[34] Hu Z. Study of safety risks and control measures of Hefei Metro Construction[D]. Hefei:Hefei University of Technology, 2019.
[1] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[2] 李传金, 王强, 渐翔, 郑涛, 詹素华, 陈绍伟. 微动信号模拟及其在微动勘探中的应用[J]. 物探与化探, 2023, 47(4): 1040-1047.
[3] 王亮, 龙霞, 王婷婷, 席振铢, 陈兴朋, 钟明峰, 董志强. 等值反磁通瞬变电磁法在城市浅层空洞探测中的应用[J]. 物探与化探, 2022, 46(5): 1289-1295.
[4] 张晓亮, 白凌燕, 倪敬波, 王志辉, 赵勇, 何付兵. 北京平原区隐伏断裂与氡浓度响应关系[J]. 物探与化探, 2022, 46(2): 344-351.
[5] 苏宝, 刘晓丽, 卫晓波, 高歌, 王云鹏. 井间超高密度电阻率法溶洞探测研究[J]. 物探与化探, 2021, 45(5): 1354-1358.
[6] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[7] 陈基炜, 赵东东, 宗全兵, 张宝松, 邸兵叶, 朱红兵, 王佳龙. 基于线形台阵的高精度微动技术在城区岩性地层精细划分中的应用[J]. 物探与化探, 2021, 45(2): 536-545.
[8] 高武平, 闫成国, 张文朋, 王志胜. 电阻率层析成像在沉积区隐伏断层探测中的应用[J]. 物探与化探, 2020, 44(6): 1352-1360.
[9] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
[10] 陈实, 李延清, 李同贺, 金荣杰, 张静. 天然源面波技术在乌鲁木齐城市地质调查中的应用[J]. 物探与化探, 2019, 43(6): 1389-1398.
[11] 何育枫, 李晓娟, 佘继红, 陈晔, 徐礼鹏. 基于T-C-V架构的三维城市地质信息共享平台建设[J]. 物探与化探, 2018, 42(4): 804-810.
[12] 胡让全, 黄健民. 综合物探方法在广州市金沙洲岩溶地面塌陷、地面沉降地质灾害调查中的应用[J]. 物探与化探, 2014, (3): 610-615.
[13] 孙明, 林君. 高分辨率轻便可控震源系统实现评价城市地质隐患[J]. 物探与化探, 2009, 33(4): 440-443.
[14] 李继军, 汪启年. 重磁电综合解释方法 在天津城市三维地质结构调查中的应用[J]. 物探与化探, 2007, 31(5): 444-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com