Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (5): 986-996    DOI: 10.11720/wtyht.2019.0090
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
辽河外围北部秀水盆地大地电磁测深研究
张鹏辉1,2, 张小博1,2, 袁永真1,2, 方慧1,2, 刘建勋1,2, 姜春香1,2
1. 国家现代地质勘查技术研究中心,河北 廊坊 065000
2. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
A study of magnetotelluric sounding of Xiushui Basin in the northern periphery of Liaohe
Peng-Hui ZHANG1,2, Xiao-Bo ZHANG1,2, Yong-Zhen YUAN1,2, Hui FANG1,2, Jian-Xun LIU1,2, Chun-Xiang JIANG1,2
1. National Center for Geological Exploration Technology, Langfang 065000, China
2. Institute of Geophysical and Geochemical Exploration, Langfang 065000, China
全文: PDF(4924 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

自秀D1井在火山岩储层中钻遇良好的油气显示以来,秀水盆地成为近年来备受关注的一个中生代断陷,其以往地质工作主要集中在中生界煤田勘探,油气基础地质工作程度较低。为查明秀水盆地边界、内部构造格架和地层展布特征,通过2条大地电磁测深和重力、磁力剖面测量,获得了秀水盆地及东西两侧重磁异常曲线和8 km以浅的电性结构;以钻井、地质、岩石物性等资料为约束,确定了不同年代地层的电性结构特征,综合建立了区域地质-地球物理剖面模型。结果表明秀水盆地盖层整体具有较低的电阻率特征,与下伏基底具有明显的电阻率差异;秀水盆地基底为上古生界地层,且南北基底组成不同,盆地东西两侧基底为前寒武变质岩系。盆地内部呈两凹夹一隆的构造格局,东侧规模较大。这些认识为秀水盆地及松辽外围中生代盆地的油气资源评价提供了可靠的地球物理依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鹏辉
张小博
袁永真
方慧
刘建勋
姜春香
关键词 大地电磁测深秀水盆地盆地结构地层展布油气资源评价    
Abstract

Xiushui Basin is a small-sized Mesozoic fault depression located in the south of Zhangqiang fault depression where good indications of oil and gas have been drilled in its volcanic reservoirs in recent years. In order to find out the boundary, internal framework and stratigraphic distribution of the Xiushui Basin, the authors conducted magnetotelluric sounding and gravity and magnetic profile measurement along two survey lines and, as a result, obtained the magnetic anomaly curves and the shallow electrical structures of the Xiushui Basin and its peripheral east and west sides. Constrained by drilling, geological and petrophysical data, the electrical structure characteristics of strata in different ages were determined, and the regional geological-geophysical model was synthetically established. The results show that the overall caprock of Xiushui Basin has low resistivity, which is apparently different from that of underlying basement. The basement of Xiushui Basin consists mainly of Upper Paleozoic strata, and the composition of the basement in the north is different from that in the south. In addition, the basement on east and west sides of the periphery of the basin consists of Precambrian metamorphic rock series. The basin has a structural pattern of two concaves and one uplift, relatively larger in the eastern sub-depression. The understanding obtained by the authors provides reliable geophysical basis for the oil and gas resources evaluation in the Xiushui Basin and Mesozoic basins in the periphery of the Songliao Basin.

Key wordsmagnetotelluric sounding    Xiushui Basin    basin structure    stratigraphic distribution    oil and gas resources evaluation
收稿日期: 2019-02-20      出版日期: 2019-10-25
:  P622  
  P631.3+25  
基金资助:中国地质调查局地质调查项目(DD20160164);中国地质调查局地质调查项目(DD20190030);中国地质科学院基本科研业务费课题(JYYWF20180902);中国地质科学院基本科研业务费课题(AS2017Y05)
作者简介: 张鹏辉(1987-),男,工程师,从事地球物理应用和研究工作。 Email: zhangpenghui@igge.cn
引用本文:   
张鹏辉, 张小博, 袁永真, 方慧, 刘建勋, 姜春香. 辽河外围北部秀水盆地大地电磁测深研究[J]. 物探与化探, 2019, 43(5): 986-996.
Peng-Hui ZHANG, Xiao-Bo ZHANG, Yong-Zhen YUAN, Hui FANG, Jian-Xun LIU, Chun-Xiang JIANG. A study of magnetotelluric sounding of Xiushui Basin in the northern periphery of Liaohe. Geophysical and Geochemical Exploration, 2019, 43(5): 986-996.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0090      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I5/986
Fig.1  秀水盆地区域地质及大地电测测深点布置
地层 岩石样品测试 MT首支视电阻率
岩性 数量 数值范围/(Ω·m) 平均值/(Ω·m) 数量 数值范围/(Ω·m) 平均值/(Ω·m)
第四系 6 6.7~77.8 29.9
3
安山玢岩 6 2564.1~6324 3980.0
安山岩 11 103~879.8 402.0
白垩系义县组 安山玄武岩 6 1166~4832 2190.0 62 14.9~81.9 24.5
辉绿岩 6 224~711 397.0
粉砂岩 11 218~601 372.0
侏罗系 泥质粉砂岩 8 429~886 515.0 7 73.1~172.9 121.7
花岗岩 12 1506~4300 2820.0
石炭—二叠系 68 994~10764 3964.0 9 154.9~322.5 246.9
元古宇 1 105.7
侵入岩 19 105.6~543 287.4
Table 1  野外露头及大地电磁资料首支电阻率测试结果
Fig.2  秀水盆地钻孔电测井与大地电磁测深反演结果对比
地层 主要岩性 样品数 最小值/(g·cm-3) 最大值/(g·cm-3) 平均值/(g·cm-3)
白垩系 粉砂岩、泥质粉砂岩 11 2.46 2.68 2.59 2.61
花岗岩 5 2.46 2.64 2.58
安山岩、玄武质安山岩 12 2.47 2.61 2.54
玄武岩、安山质玄武岩 15 2.54 2.75 2.67
侏罗系 泥质粉砂岩、粉砂岩 6 2.46 2.70 2.58 2.62
花岗岩、二长花岗岩 14 2.55 2.66 2.60
石炭—二叠系 花岗岩、二长花岗岩 24 2.53 2.71 2.61 2.71
变质英安岩 15 2.65 2.90 2.76
石英岩 14 2.70 2.81 2.74
糜棱岩 11 2.71 2.86 2.77
Table 2  研究区露头岩石密度测试统计
Fig.3  研究区大地电磁测深典型测点的视电阻率曲线
Fig.4  大地电磁剖面全频点电性主轴统计结果玫瑰图
Fig.5  L1测线重力异常曲线(a)、电性结构剖面(b)及地质推断结果(c)
Fig.6  L2测线重力异常曲线(a)、电性结构剖面(b)及地质推断结果(c)
[1] 王东坡, 许敏, 薛林福 , 等. 沉积盆地地球动力学系统的研究——以辽西—辽北—松辽盆地南部为例[J]. 石油与天然气地质, 1999,20(4):273-278.
doi: 10.11743/ogg19990401
[1] Wang D P, Xu M, Xue L F , et al. Studies on geodynamic systems of sedimentary basins: taking west liaoning, north liaoning and south songliao basin for example[J]. Oil & Gas Geology, 1999,20(4):273-278.
[2] 李晓光, 高险峰 , 等. 辽河探区油气勘探潜力与前景[J]. 特种油气藏, 2011,18(5):1-5.
[2] Li X G, Gao X F , et al. Oil and gas exploration potential and prospect in the Liaohe exploration area[J]. Special Oil & Gas Reservoirs, 2011,18(5):1-5.
[3] 陈为佳, 何登发 , 等. 松南地区构造-地层层序与盆地演化[J]. 地质学报, 2014,88(5):932-942.
[3] Chen W J, He D F , et al. Tectono-stratigraphic sequence and basin evolution in southern Songliao basin[J]. Acta Geologica Sinica, 2014,88(5):932-942.
[4] 丁秋红, 陈树旺, 李晓海 , 等. 辽宁北部秀水盆地秀D1井孢粉组合及其地层意义[J]. 地质通报, 2017,36(8):1305-1318.
[4] Ding Q H, Chen S W, Li X H , et al. Spore-Pollen assemblages of Xiu D1 well in Xiushui basin,northern Liaoning Province and their stratigraphic singnificance[J]. Geological Bulletin of China, 2017,36(8):1305-1318.
[5] 丁秋红, 陈树旺, 李晓海 , 等. 辽宁北部秀水地区中侏罗系地层的厘定及其地质意义[J]. 地质通报, 2016,35(08):1223-1229.
[5] Ding Q H, Chen S W, li X H , et al. The determination of the middle Jurassic strata in Xiushui area, northern Liaoning Province, and its geological significance[J]. Geological Bulletin of China, 2016,35(8):1223-1229.
[6] 孙鹏, 唐友军, 张健 , 等. 松辽盆地南部秀水断陷油砂地球化学特征[J]. 地质论评, 2017,63(S1):131-132.
[6] Sun P, Tang Y J, Zhang J , et al. Geochemical characteristics of oil sands in Xiushui depression, Southern Songliao Basin[J]. Geological Review, 2017,63(S1):131-132.
[7] 陈树旺, 公繁浩, 杨建国 , 等. 松辽盆地外围油气基础地质调查工程进展与未来工作方向[J]. 中国地质调查, 2016,3(6):1-9.
[7] Chen S W, Gong F H, Yang J G , et al. Progress and orientation of the project about fundamental geological survey on oil and gas resources in the periphery area of Songliao Basin[J]. Geological Survey of China, 2016,3(6):1-9.
[8] 姚玉来, 李晓海, 司江福 , 等. 辽宁北部秀水盆地秀D1井烃源岩评价[J]. 地质与资源, 2018,27(2):186-191.
[8] Yao Y L, Li X H, Si J F , et al. Evaluation on the source rocks from X-D1 well in Xiushui basin, Northern Liaoning province[J]. Geology and Resources, 2018,27(2):186-191.
[9] 陈发景, 汪新文 . 中国中、新生代含油气盆地成因类型、构造体系及地球动力学模式[J]. 现代地质, 1997,11(4):409-424.
[9] Chen F J, Wang X W . Genetic types,tectonic systems and geodynamic models of Mesozoic and Cenozoic oil and gas bearing basins in China[J]. Geoscience, 1997,11(4):409-424.
[10] 张兴洲, 乔德武, 迟效国 , 等. 东北地区晚古生代构造演化及其石油地质意义[J]. 地质通报, 2011,30(2-3):205-213.
[10] Zhang X Z, Qiao D W, Chi X G , et al. Late-Paleozoic tectonic evolution and oil-gas potentiality in northeastern China[J]. Geological Bulletin of China, 2011,30(2-3):205-213.
[11] 刘永江, 张兴洲, 迟效国 , 等. 大兴安岭地区上古生界变形特征及构造层划分[J]. 吉林大学学报:地球科学版, 2011,41(5):1304-1313.
[11] Liu Y J, Zhang X Z, Chi X G , et al. Deformation and tectonic layer division of the upper paleozoic in Daxing'anling area[J]. Journal of Jilin University:Earth Science Edition, 2011,41(5):1304-1313.
[12] 刘杰, 杨中柱, 陈树良 , 等. 辽北法库地区层状变质岩系锆石SHRIMP年龄及其地质意义[J]. 地质与资源, 2016,25(1):22-25.
[12] Liu J, Yang Z Z, Chen S L , et al. Zircon SHRIMP age of the stratified metamorphic rocks in Faku area, Northern Liaoning province: Geological Implication[J]. Geology & Resources, 2016,25(1):22-25.
[13] 葛荣峰, 张庆龙, 王良书 , 等. 松辽盆地构造演化与中国东部构造体制转换[J]. 地质评论, 2010,56(2):180-195.
[13] Ge R F, Zhang Q L, Wang L S , et al. Tectonic evolution of Songliao basin and the prominent tectonic regime transition in Eastern China[J]. Geological Review, 2010,56(2):180-195.
[14] 胡望水, 吕炳全, 张文军 , 等. 松辽盆地构造演化及成盆动力学探讨[J]. 地球科学, 2005,40(1):16-31.
[14] Hu W S, Luy B Q, Zhang W J , et al. An approach to tectonic evolution and dynamics of the Songliao Basin[J]. Scientia Geologica Sinica, 2005,40(1):16-31.
[15] 郝福江, 杜继宇 , 等. 深大断裂对松辽断陷盆地群南部的控制作用[J]. 世界地质, 2010,29(4):553-560.
[15] Hao F J, Du J Y , et al. Control of deep-large fault to southern Songliao fault basin group[J]. Global Geology, 2010,29(4):553-560.
[16] 严丽萍, 孙连昌, 张庆堂 . 张强凹陷南部地区构造特征研究[J]. 长江大学学报:自然科学版, 2011,8(2):14-16.
[16] Yan L P, Sun L C, Zhang Q T . Study on structural characteristics of southern Zhangqiang depression[J]. Journal of Yangtze University:Natural Science Edition, 2011,8(2):14-16.
[17] 郭友钊, 胡平, 林天亮 , 等. 利用大地电磁测深曲线首支建立地层电性模型的方法初研[J]. 地质与勘探, 2005,41(S):171-173.
[17] Guo Y Z, Hu P, Lin T L , et al. A preliminary study on establishment of formation electrical model by using the first segment of MT sounding curve[J]. Geology and Prospecting, 2005,41(S):171-173.
[18] 陈小斌, 蔡军涛 . 大地电磁资料精细处理和二维反演解释技术研究(四)——阻抗张量分解的多测点-多频点统计成像分析[J]. 地球物理学报, 2014,57(6):1946-1957.
doi: 10.6038/cjg20140625
[18] Chen X B, Cai J T . Refined techniques for magnetotelluric data processing and two-dimensional inversion(IV) :Statistical image method based on multi-site,multi-frequency tensor decomposition[J]. Chinese Journal of Geophysics, 2014,57(6):1946-1957.
[19] Groom R W, Bailey R C . Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion[J]. Journal of Geophysical Research, 1989,94(B2):1913-1925.
[20] Bahr K . Interpretation of the magnetotelluric impedance tensor: Regional induction and local telluric distortion[J]. Journal of Geophysics, 1989,62(2):119-127.
[21] Bibby H M, Caldwell T G, Brown C . Determinable and non-determinable parameters of galvanic distortion in magnetotellurics[J]. Geophysical Journal International, 2005,163(3):915-930.
[22] McNeice G W, Jones A G . Multisite, multifrequency tensor decomposition of magnetotelluric data[J]. Geophysics, 2001,66(1):158-172.
[23] Rodi W, Mackie R L . Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics, 2001,66(1):174-187.
[24] 叶涛, 陈小斌, 严良俊 . 大地电磁资料精细处理和二维反演解释技术研究(三)——构建二维反演初始模型的印模法[J]. 地球物理学报, 2013,56(10):3596-3606.
doi: 10.6038/cjg20131034
[24] Ye T, Chen X B, Yan L J . Refined techniques for data processing and two-dimensional inversion in magnetotelluric(Ⅲ). Agnetotelluricues for data processing and two-dimensional inversmagnetotelluric inversion[J]. Chinese Journal of Geophysics, 2013,56(10):3596-3606.
[25] 蔡厚安, 徐德斌, 李宝芳 , 等. 辽西彰武—黑山区逆冲推覆构造的发现及找煤意义[J]. 煤田地质与勘探, 2010,38(5):1-6.
[25] Cai H A, Xu D B, Li B F , et al. The discovery of thrust nappe structure in Zhangwu-Heishan area, Liaoning province and its significance for coal-searching[J]. Coal Geology & Exploration, 2010,38(5):1-6.
[26] 杨晓波, 高恩忆 . 法库地区大型韧性剪切带特征及成因机制[J].国土资源, 1996(2):109-117.
[26] Yang X B, Gao E Y . Features and genetic mechanism of large scale ductile shear zone in Faku area[J]. Liaoning Geology, 1996(2):109-117.
[27] 王万贵, 程爱国 . 辽宁张强盆地聚煤与构造特征[J]. 中国煤炭地质, 2005,17(1):4-7.
[27] Wang W G, Cheng A G . Coal accumulation and structural features in Zhangqiang basin, Liaoning[J]. Coal Geology of China, 2005,17(1):4-7.
[28] 殷敬红, 雷安贵, 方炳钟 , 等. 辽河外围中生代盆地“下洼找油气”理念[J]. 石油勘探与开发, 2008,35(1):6-10.
doi: 10.1016/S1876-3804(08)60002-6
[28] Yin J H, Lei A G, Fang B Z , et al. Concept of "seeking for oil and gas deep down depressions" in Liaohe peripheral Mesozoic basin[J]. Petroleum Exploration and Development, 2008,35(1):6-10.
[29] 张浩 . 张强凹陷油藏类型及成藏控制因素分析[J]. 石油天然气学报, 2007,29(6):7-12.
[29] Zhang H . Reservoir types and reservoir formation control factors in Zhangqiang depression[J]. Journal of Oil and Gas Technology, 2007,29(6):7-12.
[1] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[2] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[3] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
[4] 刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
[5] 刘俊峰, 程云涛, 邓志强, 周芳春, 曹创华, 刘翔, 曾美强, 李杰, 黄志彪, 陈虎. CSAMT与AMT数据“拼接”处理——以湖南仁里铌钽矿床7号剖面为例[J]. 物探与化探, 2021, 45(1): 68-75.
[6] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[7] 张伟, 胡蕾, 张钊搏. LEMI-417型地球深部电磁场观测系统的数据格式解析[J]. 物探与化探, 2020, 44(4): 810-815.
[8] 彭炎, 张小博, 张健, 张鹏辉, 袁永真, 姜春香. 大地电磁测深法在滨北西部斜坡带油气地质调查评价中的应用[J]. 物探与化探, 2020, 44(3): 656-664.
[9] 吕琴音, 张小博, 仇根根, 王刚. 大地电磁测深首枝频点统计求平均法在连片静位移区的校正实验研究[J]. 物探与化探, 2020, 44(3): 677-684.
[10] 朱自串, 周丹, 李德文, 余润龙. 音频大地电磁测深法在老挝万象盆地钾镁盐矿产勘探中的运用效果[J]. 物探与化探, 2019, 43(6): 1268-1276.
[11] 王长城. 大地电磁测深法用于快速评价新生代盆地盐类矿床成矿远景区的初步试验[J]. 物探与化探, 2019, 43(5): 997-1002.
[12] 朱怀亮, 胥博文, 刘志龙, 石峰, 辛玉齐, 曹学刚, 程国强. 大地电磁测深法在银川盆地地热资源调查评价中的应用[J]. 物探与化探, 2019, 43(4): 718-725.
[13] 田巍, 李旭兵, 王保忠. 大地电磁测深在湘东南坳陷页岩气勘探中的应用[J]. 物探与化探, 2019, 43(2): 281-289.
[14] 孙海川, 刘永亮, 邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探与化探, 2019, 43(2): 290-297.
[15] 徐玳笠, 唐宝山, 魏文博. 龙门山断裂带及其邻区电性结构特征[J]. 物探与化探, 2019, 43(1): 17-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com