Please wait a minute...
E-mail Alert Rss
 
物探与化探  2016, Vol. 40 Issue (6): 1244-1249    DOI: 10.11720/wtyht.2016.6.30
  计算技术与信息处理 本期目录 | 过刊浏览 | 高级检索 |
南海北部陆坡崎岖海底区地震成像:OBS旅行时反演
刘斌1,2
1. 国土资源部 海底矿产资源重点实验室, 广东 广州 510075;
2. 广州海洋地质调查局, 广东 广州 510075
Seismic imaging of subsurface beneath rough seafloor in the north slope of South China Sea: OBS travel time inversion
LIU Bin1,2
1. Key Laboratory of Marine Mineral Resource, Ministry of Land and Resource, Guangzhou 510075, China;
2. Guangzhou Marine Geological Survey, Guangzhou 510075, China
全文: PDF(5560 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

深水陆坡油气资源丰富,是油气勘探的重要领域。由于陆坡水深变化较大、海底地形崎岖、地质构造复杂,地震成像存在诸多难点,其中,速度模型的建立是最大的难题之一。利用OBS (ocean bottom seismometer)数据上丰富的折射初至信息,采用旅行时反演方法建立崎岖海底区速度模型。OBS数据由广州海洋地质调查局在南海北部陆坡珠江口盆地东部海域采集,数据质量良好,存在大量的初至折射波。地震成像结果表明,在深水崎岖海底区,利用OBS的初至旅行时能够获得地震成像所需要的背景速度场。受限于高频近似的假设,初至旅行时反演结果分辨率较低。全波形反演可以提供精度更高的速度结构,初至旅行时反演结构可用作全波形反演的初始模型。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

The deep water zone has great oil and gas potential,and hence it is treated as key field of exploration.The great variation of water depth, the roughness of seafloor and the complex geological setting make it difficult to conduct seismic imaging of the target object.Velocity building is one of the greatest difficulties.The rich refraction wave in the OBS (ocean bottom seismometer) data was used to invert the velocity model with the method of travel time inversion.The OBS was acquired by Guangzhou Marine Geological Survey in the east part of Pearl River basin on the north slope of South China Sea.The OBS data have good quality with refraction wave clearly observable.The imaging result shows that in the region of rugged seafloor, first arrival travel time inversion can provide the background velocity model needed by seismic imaging.Limited by the high frequency approximation,the velocity model has low resolution.More advanced full waveform inversion can provide high resolution model,with first arrival travel time inversion result as the initial model.

收稿日期: 2016-04-16      出版日期: 2016-12-10
:  P631.4  
基金资助:

国土资源部海底矿产重点实验室开放课题基金(KLMMR-2013-A-18)

作者简介: 刘斌,男,工程师,2012年硕士毕业于中石油勘探开发研究院,现在广州海洋地质调查局资料处理研究所工作,主要从事水合物调查研究、OBS数据处理及反演工作。E-mail:liugele@163.com
引用本文:   
刘斌. 南海北部陆坡崎岖海底区地震成像:OBS旅行时反演[J]. 物探与化探, 2016, 40(6): 1244-1249.
LIU Bin. Seismic imaging of subsurface beneath rough seafloor in the north slope of South China Sea: OBS travel time inversion. Geophysical and Geochemical Exploration, 2016, 40(6): 1244-1249.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2016.6.30      或      https://www.wutanyuhuatan.com/CN/Y2016/V40/I6/1244

[1] 张春贺,乔德武,李世臻,等.复杂地区油气地球物理勘探技术集成[J].地球物理学报,2011,54(2):374-387.
[2] 龚旭东,陈继宗,庄祖银,等.深水地震资料处理关键技术浅析[J].勘探地球物理进展,2010,33(5):336-341.
[3] 常旭,刘伊克,杜向东,等.深水崎岖海底地震数据成像方法与技术与应用[J].地球物理学报,2008,51(1):228-234.
[4] Save P,Vlad l.Numerical implementation of wave-equation migration velocity analysis operators[J].Geophysics,2008,145-159.
[5] Virieux J,Operto S.An overview of full-waveform inversion in exploration geophysics[J].Geophysics,2009,74:WCC1-WCC26.
[6] Zhang J,Toksoz M N.Nolinear refraction traveltime tomography[J].Geophysics,1998,63(5):1726-1737.
[7] Bregman N D,Bailey R C,Chapman C H.Crosshole seismic tomography[J].Geophysics,1989,54(2):200-215.
[8] Taillandier C,Noble M,Chauris,et al.First arrival traveltime tomography based on the adjoint-state method[J].Geophysics,2009,74(6):WCB1-WCB10.
[9] Bording R P,Gersztenkorn A,Lines L R.Application of seismic travel time tomography[J].Geophysical Journal of the Royal Astronomical Society,1987,90:285-303.
[10] Woodward M J,Nichols D,Zdraveva O,et al.A decade of tomography[J].Geophysics,2008,73(5):VE5-VE11.
[11] Williamson P R.A guide to the limit of resolution imposed by scattering in ray tomography[J].Geophysics,1991,56(2):202-207.
[12] 夏少红,敖威,赵明辉,等.海洋广角地震数据校正方法探讨[J].海洋通报,2011,30(5):447-451.
[13] Hobro J W,Singh S C,Minshull T A.Three dimensional tomographic inversion of combined reflection and refraction seismic traveltime data[J].Geophysical Journal International,2003,152(1):79-93.
[14] Zelt C A,Barton P J.Three-dimensional seismic refraction tomography:Acomparison of two methods applied to data from the Faeroe basin[J].Journal of Geophysical Research,1998,103:7189-7210.
[15] Hole J A.Nonlinear high-resolution three-dimensional seismic travel time tomography[J].Journal of Geophysical Research,1992,97(B5):6553-6562.
[16] Korenaga J,Holbrook W S,Singh S C,et al.Natural gas hydrates on the southeast U.S.margin:constraints from full waveform and travel time inversion of wide-angle seismic data[J].Journal of Geophysical Research,1997,102(B7):15345-15365.
[17] Koulakov I,Stupina T,Kopp H.Creating realistic models based on combined forward modeling and tomographic inversion of seismic profiling data[J].Geophysics,2009,75(3):115-136.
[18] 李振春.地震叠前成像理论与方法[M].东营:中国石油大学出版社,2011:8.
[19] Stoffa P L,Fokkema J T,Freire R M de L,et al.Split-step Fourier migration[J].Geophysics,1990,55(4):410-421.
[20] Ristow D,Ruhl T.Fourier finite-difference migration[J].Geophysics,1994,59(12):1882-1893.
[21] Popov M M,Semtchenok N M,Popov P M,et al.Depth migration by the Gaussian beam summation method[J].Geophysics,2010,75(2):S81-S93.
[22] Hill N R.Gaussian beam migration[J].Geophysics,1990,55(11):1461-1428.
[23] 杨勤勇,段心标.逆时偏移技术发展现状与趋势[J].石油物探,2010,49(1):92-98.
[24] Ferguson R J,Gray F.Margrave.Planned seismic imaging using explicit one-way operators[J].Geophysics,2005,70(5):101-109.
[25] Zelt C A,Smith R B.Seismic traveltime inversion for 2-D crustal velocity structure[J].Geophysical Journal International,1992,108:16-34.
[26] Chauris H,Noble M,Taillandier C.What initial velocity model do we need for full waveform inversion[C]//Rome:70th EAGE Conference&Exhibition,2008:75-79.
[27] Sirgue L,Pratt R G.Efficient waveform inversion and imaging:A strategy for selecting temoral frequencies[J].Geophysics,2004,69(1):231-248.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com