Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (4): 804-814    DOI: 10.11720/wtyht.2019.0045
     方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于非结构网格三维有限元堤坝隐患时移特征分析
孙大利1, 李貅1, 齐彦福1, 孙乃泉1, 李文忠2, 周建美1, 孙卫民2
1. 长安大学 地质工程与测绘学院,陕西 西安 710054
2. 长江勘测规划设计研究有限责任公司,湖北 武汉 430010
Time-lapse characteristics analysis of hidden dangers of three-dimensional finite element levees based on unstructured grids
Da-Li SUN1, Xiu LI1, Yan-Fu QI1, Nai-Quan SUN1, Wen-Zhong LI2, Jian-Mei ZHOU1, Wei-Min SUN2
1. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China
2. Changjiang Survey, Planning, Design and Research Co., Ltd., Wuhan 430010, China
全文: PDF(9599 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

土石堤坝的内部隐患是造成堤坝事故的主要因素,严重威胁到坝体的安全和稳定。由于堤坝隐患会随时间发生形态与尺寸的改变,表现出明显的电性结构变化,因此通过时移电阻率成像方法可以实现对土石堤坝的实时监测,进而达到堤坝隐患快速预警的目的。目前的时移电法堤坝隐患监测技术主要基于一维或二维介质模型,无法准确描述三维堤坝结构的时移电性变化特征,为此,基于高密度直流电阻率法探测理论,利用三维非结构有限元数值模拟正演方法,精细模拟典型堤坝隐患模型直流电场的时移变化特征,分析响应变化规律。数值模拟结果表明,时移监测结果对堤坝隐患变化趋势具有良好的反映,堤坝隐患尺寸、位置和形态的改变能够引起监测异常幅值和位置的规律性变化。本文的研究成果可为堤坝隐患时移监测异常识别和灾害预警提供理论指导。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙大利
李貅
齐彦福
孙乃泉
李文忠
周建美
孙卫民
关键词 堤坝隐患三维非结构有限元时移监测正演模拟高密度电法    
Abstract

The internal hidden danger of earth-rock dams is the main cause of dyke accidents, which seriously threatens the safety and stability of the dam. Since the hidden danger of the dam will change with the shape and size over time, it shows obvious electrical structural changes. Therefore, the real-time monitoring of the earth dam can be realized by the time-lapsing resistivity imaging method, so as to achieve the purpose of rapid warning of hidden dangers of the dam and avoid them in time. The damage is caused by hidden dangers. However, the current time-lapsing electric dam hidden danger monitoring technology is mainly based on one-dimensional or two-dimensional medium model, which cannot accurately describe the time-lapse electrical characteristics of three-dimensional dam structure. For this reason, based on high-density DC resistivity detection theory, the authors used the three-dimensional non-structural finite element numerical simulation forward modeling method to simulate the time-lapse variation characteristics of the DC electric field in a typical dam hidden danger model and analyzed the response change law. The results of time-shift monitoring have a good reflection of the trend of hidden dangers of dams. The changes in the size, location and shape of dams can cause regular changes in the amplitude and location of the monitoring. The research results of this paper can provide theoretical guidance for the anomaly identification and disaster warning of time-lapse monitoring of dams.

Key wordsdam hidden danger    three-dimensional unstructured finite element    time-lapse monitoring    forward modeling    high-density electrical method
收稿日期: 2019-01-23      出版日期: 2019-08-15
:  P631  
基金资助:国家重点研发计划(2017YFC1502600);国家自然科学基金重点项目(41830101);中央高校基本科研业务费专项资金(300102268104);陕西省自然科学基础研究计划资助项目(2018JQ4006)
作者简介: 孙大利(1993-),男,河北省涿州市人,硕士研究生。Email: 574111077@qq.com
引用本文:   
孙大利, 李貅, 齐彦福, 孙乃泉, 李文忠, 周建美, 孙卫民. 基于非结构网格三维有限元堤坝隐患时移特征分析[J]. 物探与化探, 2019, 43(4): 804-814.
Da-Li SUN, Xiu LI, Yan-Fu QI, Nai-Quan SUN, Wen-Zhong LI, Jian-Mei ZHOU, Wei-Min SUN. Time-lapse characteristics analysis of hidden dangers of three-dimensional finite element levees based on unstructured grids. Geophysical and Geochemical Exploration, 2019, 43(4): 804-814.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0045      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I4/804
Fig.1  四面体单元(a)及堤坝网格剖分(b)
Fig.2  温纳装置示意
Fig.3  数值解与解析解对比
Fig.4  堤坝平面示意
Fig.5  管状渗漏模型及网格剖分示意
a—管状渗漏平面示意;b—管状渗漏立体示意;c—网格剖分xz剖面; d—网格剖分yz剖面
Fig.6  不同直径(a)和不同深度(b)管状渗漏的电位曲线
Fig.7  不同直径管状渗漏的时移视电阻率剖面
Fig.8  不同埋深管状渗漏的视电阻率剖面
Fig.9  层状渗漏模型及网格剖分示意
a—层状渗漏平面示意;b—层状渗漏立体示意;c—网格剖分xz剖面; d—网格剖分yz剖面
Fig.10  不同层厚(a)、不同深度(b)层状渗漏的电位变化曲线
Fig.11  不同厚度层状渗漏的视电阻率剖面
Fig.12  不同埋深层状渗漏的视电阻率剖面
Fig.13  堤坝细裂缝示意
a—细裂缝平面示意;b—细裂缝立体示意;c—网格剖分xz剖面; d—网格剖分yz剖面
Fig.14  不同倾角细裂缝的电位变化
Fig.15  不同倾斜角度细裂缝的视电阻率剖面
Fig.16  堤坝管漏监测曲线
a—监测电位曲线;b—电位峰值
Fig.17  堤坝层状渗漏监测曲线
a—监测电位曲线;b—电位峰值
[1] 中国人民共和国水利部, 中华人民共和国国家统计局. 第一次全国水利普查公报[M]. 北京: 中国水利水电出版社, 2013: 3-6.
[1] Ministry of Water Resources of the People’s Republic of China, National bureau of statistics of People’s Republic of China. Bulletin of first national census for water[M]. Beijing: China Water&Power Press, 2013: 3-6.
[2] 王传雷, 董浩斌, 刘占永 . 物探技术在监测堤坝隐患上的应用[J]. 物探与化探, 2001,25(4):294-299.
[2] Wang C L, Dong H B, Liu Z Y . An investigation into the monitoring and forewarning technique for dyke ridden trouble under the condition of high water level[J]. Geophysical and Geochemical Exploration, 2001,25(4):294-299
[3] 张辉, 杨天春 . 堤坝隐患无损探测研究应用进展[J]. 大坝与安全, 2013(1):29-34.
[3] Zhang H, Yang T C . Review of non-destructive detection for hidden defects of dams[J]. Dam and Safety, 2013(1):29-34.
[4] 底青云, 王妙月, 严寿民 , 等. 高密度电阻率法在珠海某防波堤工程中的应用[J]. 地球物理学进展, 1997,12(2):79-88.
doi:
[4] Di Q Y, Wang M Y, Yan S M , et al. The application of the high density resistivity method for the seawave-proof dam in Zhuhai-Harbour[J]. Progress in Geophysics, 1997,12(2):79-88.
[5] 徐海峰, 窦丹丹, 李卓 , 等. 霍林河水库渗漏探测试验研究[J]. 三峡大学学报:自然科学版, 2014,36(6):10-14.
[5] Xu H F, Dou D D, Li Z , et al. Experimental study of seepage of Huolin river reservior[J]. Journal of China Three Gorges University:Natural Sciences, 2014,36(6):10-14.
[6] 李军, 马新龙 . 高密度电法在水库大坝塌陷勘测中的应用[J]. 工程勘察, 2010,38(1):89-94.
[6] Li J, Ma X L . The application of high-density electrical method to the collapse-surveying on the dam[J]. Geotechnical Investigation & Surveying, 2010,38(1):89-94.
[7] Slater L D, Sandberg S K . Resistivity and induced polarization monitoring of salt transport under natural Hydraulic gradients[J]. Geophysics, 2000,65(2):408-420.
[8] Arora T, Ahmed S . Characterization of recharge through complex vadose zone of a granitic aquifer by time-lapse electrical resistivity tomography[J]. Journal of Applied Geophysics, 2011,73(1):35-44.
[9] Travelletti J, Sailhac P, Malet J P , et al. Hydrological response of weathered clay—shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography[J]. Hydrological processes, 2012,26(14):2106-2119.
[10] 李飞, 程久龙, 陈绍杰 , 等. 基于时移高密度电法的覆岩精细探测方法研究[J]. 矿业科学学报, 2019,4(1):1-7.
[10] Li F, Chong J L, Chen S J , et al. Fine detection of overburden strata based on time lapse high density resistivity method[J]. Journal of Mining Science and Technology, 2019,4(1):1-7.
[11] Sjödahl P, Dahlin T, Johansson S . Using resistivity measurements for dam safety evaluation at Enemossen tailings dam in southern Sweden[J]. Environmental Geology, 2005,49(2):267-273.
[12] Boleve A, Janod F, Revil A , et al. Localization and quantification of leakages in dams using time-lapse self-potential measurements associated with salt tracer injection[J]. Journal of Hydrology, 2011,403(3-4):242-252.
[13] 赵晓博, 朱自强, 李建慧 , 等. 基于非结构化网格的瞬变电磁2.5维有限元正演模拟[J]. 物探化探计算技术, 2011,33(5):517-521+463.
[13] Zhao X B, Zhu Z Q, Li J H , et al. Finite element modeling of 2.5D tem using unstructured meshes[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2011,33(5):517-521+463.
[14] 李勇, 林品荣, 徐宝利 , 等. 复杂地形三维直流电阻率有限元数值模拟[J]. 地球物理学进展, 2009,24(3):1039-1046.
doi: 10.3969/j.issn.1004-2903.2009.03.031
[14] Li Y, Lin P R, Xu B L , et al. FEM numerical modeling of 3-D DC resistivity under complicated terrain[J]. Progress in Geophys, 2009,24(3):1039-1046.
[15] 王亚璐, 底青云, 王若 . 三维CSAMT法非结构化网格有限元数值模拟[J]. 地球物理学报, 2017,60(3):1158-1167.
[15] Wang Y L, Di Q Y, Wang R . Tree-dimensional modeling of controlled-source audio-frequency magnetotellurics using the finite element method on an unstructured grid[J]. Chinese Journal of Geophysics, 2017,60(3):1158-1167.
[16] 杨军, 刘颖, 吴小平 . 海洋可控源电磁三维非结构矢量有限元数值模拟[J]. 地球物理学报, 2015,58(8):2827-2838.
[16] Yang J, Liu Y, Wu X P . 3D Simulation of Marine CSEM Using vector finite element method on unstructured grids[J]. Chinese Journal of Geophysics, 2015,58(8):2827-2838.
[17] 徐世浙 . 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994.
[17] Xu S Z. Finite element method in geophysics [M]. Beijing: Science Press, 1994.
[18] 任政勇, 汤井田 . 基于局部加密非结构化网格的三维电阻率法有限元数值模拟[J]. 地球物理学报, 2009,52(10):2627-2634.
doi: 10.3969/j.issn.0001-5733.2009.10.023
[18] Ren Z Y, Tang J T . Finite element modeling of 3-D DC resistivity using locally refined unstruetured meshes[J]. Chinese Journal of Geophysics, 2009,52(10):2627-2634.
[19] 王兴泰 . 高密度电阻率法及其应用技术研究[J]. 长春地质学院学报, 1991,17(3):341-348.
[19] Wang X T . High density measurement method of electrical resistivity and its application technics[J]. Journal of Jilin University(Earth Science Edition), 1991,17(3):341-348.
[20] 孙礼钊, 郑琳, 包伟力 . 高密度电阻率法在某水库南堤渗漏探测中的应用研究[J]. 工程地球物理学报, 2016,13(5):574-579.
[20] Sun L Z, Zheng L, Bao W L . The application of high-density resistivity method to leakage detection in Nan Dam of one reservoir[J]. Chinese Journal of Engineering Geophysics, 2016,13(5):574-579.
[1] 丁卫忠, 孙夫文, 李建华, 郑采君, 林品荣, 齐方帅. 城市地下空间探测多参数并行高密度电法系统研制[J]. 物探与化探, 2021, 45(6): 1448-1454.
[2] 陈学群, 李成光, 田婵娟, 刘丹, 辛光明, 管清花. 高密度电阻率法在咸水入侵监测中的应用[J]. 物探与化探, 2021, 45(5): 1347-1353.
[3] 苏宝, 刘晓丽, 卫晓波, 高歌, 王云鹏. 井间超高密度电阻率法溶洞探测研究[J]. 物探与化探, 2021, 45(5): 1354-1358.
[4] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[5] 王光文, 王海燕, 李洪强, 李文辉, 庞永香. 地震正演技术在深反射地震剖面探测中的应用[J]. 物探与化探, 2021, 45(4): 970-980.
[6] 吴教兵, 黎峻良, 江兰, 陆俊宏, 潘黎黎, 韦王秋. 综合物探方法在广西罗城县活动断裂鉴定中的应用[J]. 物探与化探, 2021, 45(2): 346-354.
[7] 危志峰, 陈后扬, 吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探, 2020, 44(5): 1009-1018.
[8] 聂伟东, 李雪英, 万乔升, 王福霖, 何谞超. 基于affine类时频分析的旋回性薄互层时频特征影响因素分析[J]. 物探与化探, 2020, 44(4): 763-769.
[9] 苏永军, 范翠松, 赵更新, 张国利, 刘宏伟, 孙大鹏. 综合电法在探测海水入侵界面中的研究与应用——以莱州湾地区为例[J]. 物探与化探, 2020, 44(3): 704-708.
[10] 徐磊, 汪思源, 张建清, 李文忠, 李鹏. 近垂直反射正演模拟及其地下工程应用[J]. 物探与化探, 2020, 44(3): 635-642.
[11] 王战军. 电法在追索水库坝区地下暗河中的应用[J]. 物探与化探, 2019, 43(5): 1157-1162.
[12] 张军伟, 刘秉峰, 李雪, 祝全兵, 任跃勤. 基于GPRMax2D的地下管线精细化探测方法[J]. 物探与化探, 2019, 43(2): 435-440.
[13] 何幼娟, 乔玉雷, 侯丽娟, 竺俊, 高刚, 王鹏. 一种变网格差分的快速行进法[J]. 物探与化探, 2019, 43(1): 199-208.
[14] 田郁, 胡祥云, 乐彪. 倾子在地球物理断裂构造解释中的应用[J]. 物探与化探, 2018, 42(6): 1237-1244.
[15] 张强, 王鑫, 乐幸福, 张建新. 正演模拟技术在白云岩薄储层预测研究中的应用[J]. 物探与化探, 2018, 42(5): 1042-1048.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com