Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 1076-1085    DOI: 10.11720/wtyht.2024.1288
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
模型反演和深度学习反演联合的地震波阻抗优化反演
黄闻露(), 阎建国, 任立龙, 谢锐
成都理工大学 地球物理学院,四川 成都 610059
Seismic impedance optimization inversion combining model inversion with deep learning inversion
HUANG Wen-Lu(), YAN Jian-Guo, REN Li-Long, XIE Rui
College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
全文: PDF(7559 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

基于“数据驱动和模型驱动”相结合的思想,通过模型反演结果扩展标签训练集,并在深度学习算法中加入模型反演目标函数,对损失函数进行重构,提出了一种模型反演和深度学习反演联合的地震波阻抗优化反演。采用RNN网络结构实现了一种“伪标签”下的半监督深度学习网络反演,并用网络反演结果作为初始模型参与模型反演,最终优化反演由网络反演和模型反演不断迭代优化完成。通过合成Marmousi模型和实际资料,验证了所提出的方法具有较高的反演精度和实用性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄闻露
阎建国
任立龙
谢锐
关键词 数据驱动模型驱动伪标签半监督波阻抗反演    
Abstract

Based on the combination ofdata- and model-driven approaches, this study expanded the labels of the training set through model inversion results, and added the model inversion objective function to the deep learning algorithm. By constructing a new loss function, this study proposed a seismic impedance optimization inversion method combining model inversion with deep learning inversion. The semi-supervised deep learning network inversion under a pseudo-label was achieved using the RNN network structure. The network inversion results were used as the initial model to participate in the model inversion. The final optimization inversion was completed by continuous iterative optimization of both network and model inversion. The method proposed in this study proves to possess high inversion accuracy and practicability, as demonstrated by the synthesis of the Marmousi model and the actual data.

Key wordsdata-driven    model-driven    pseudo-label    semi-supervision    wave impedance inversion
收稿日期: 2023-07-07      修回日期: 2023-11-17      出版日期: 2024-08-20
ZTFLH:  P631.4  
基金资助:中国石油勘探开发研究院项目“油气地球物理前沿理论与新技术”(RPED-2020-JS-121)
作者简介: 黄闻露(1997-),女,硕士研究生,研究方向为油气地球物理勘探。Email:hwlcdut@163.com
引用本文:   
黄闻露, 阎建国, 任立龙, 谢锐. 模型反演和深度学习反演联合的地震波阻抗优化反演[J]. 物探与化探, 2024, 48(4): 1076-1085.
HUANG Wen-Lu, YAN Jian-Guo, REN Li-Long, XIE Rui. Seismic impedance optimization inversion combining model inversion with deep learning inversion. Geophysical and Geochemical Exploration, 2024, 48(4): 1076-1085.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1288      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/1076
Fig.1  优化反演流程示意
Fig.2  RNN结构示意
Fig.3  基于深度学习的波阻抗反演网络结构示意
Fig.4  优化反演的损失函数构成
Fig.5  伪标签的产生方式示意
Fig.6  模型反演的初始模型及反演结果
Fig.7  损失函数下降曲线
Fig.8  不同反演方法的预测结果(左)及误差率(右)
Fig.9  不同反演方法网络模型单道预测结果对比
RNN 伪标签 伪标签+
反演约束
第500道
相对 第1400道
误差 第1800道
第2400道
0.1296 0.1176 0.0547
0.0671 0.0722 0.0490
0.0988 0.1054 0.0493
0.0877 0.0827 0.0441
MSE 0.0616 0.0573 0.0158
R2 0.9378 0.9415 0.9839
Table 1  不同反演方法的评价效果
Fig.10  研究区连井剖面
Fig.11  基于不同反演方法的反演结果对比
[1] Chen Y K, Chen H M, Xiang K, et al. Geological structure guided well log interpolation for high-fidelity full waveform inversion[J]. Geophysical Journal International, 2016, 207(2):1313-1331.
[2] 王华忠, 王雄文, 王西文. 地震波反演的基本问题分析[J]. 岩性油气藏, 2012, 24(6):1-9.
[2] Wang H Z, Wang X W, Wang X W. Analysis of the basic problems of seismic wave inversion[J]. Lithologic Reservoirs, 2012, 24(6):1-9.
[3] 蒋星达, 张伟, 杨辉. 地球物理反演问题中的贝叶斯方法研究[J]. 地球与行星物理论评, 2022, 53(2):159-171.
[3] Jiang X D, Zhang W, Yang H. The research on Bayesian inference for geophysical inversion[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(2):159-171.
[4] 邢文军, 曹思远, 陈思远, 等. 基于谱反演方法的叠后纵波阻抗反演[J]. 物探与化探, 2023, 47(2):429-437.
[4] Xing W J, Cao S Y, Chen S Y, et al. Post-stack P-wave impedance inversion based on spectral inversion[J]. Geophysical and Geochemical Exploration, 2023, 47(2):429-437.
[5] 凡友华, 刘雪峰, 陈晓非. 面波频散反演地下层状结构的拟牛顿法[J]. 物探与化探, 2006, 30(5):456-459.
[5] Fan Y H, Liu X F, Chen X F. The quasi Newton method in the inversion of the dispersion curve of Rayleigh wave in multilayered media[J]. Geophysical and Geochemical Exploration, 2006, 30(5):456-459.
[6] Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566:195-204.
[7] Yu S W, Ma J W. Deep learning for geophysics:Current and future trends[J]. Reviews of Geophysics, 2021, 59(3):1-36.
[8] 肖立志. 机器学习数据驱动与机理模型融合及可解释性问题[J]. 石油物探, 2022, 61(2):205-212.
doi: 10.3969/j.issn.1000-1441.2022.02.002
[8] Xiao L Z. The fusion of data-driven machine learning with mechanism models and interpretability issues[J]. Geophysical Prospecting for Petroleum, 2022, 61(2):205-212.
doi: 10.3969/j.issn.1000-1441.2022.02.002
[9] Das V, Pollack A, Wollner U, et al. Convolutional neural network for seismic impedance inversion[J]. Geophysics, 2019, 84(6):R869-R880.
doi: 10.1190/GEO2018-0838.1
[10] Alfarraj M, AlRegib G. Semisupervised sequence modeling for elastic impedance inversion[J]. Interpretation, 2019, 7(3):SE237-SE249.
[11] Biswas R, Sen M K, Das V, et al. Prestack and poststack inversion using a physics-guided convolutional neural network[J]. Interpretation, 2019, 7(3):SE161-SE174.
[12] Luo R, Chen H Z, Wang B F. Semisupervised seismic impedance inversion with data augmentation and uncertainty analysis[J]. Geophysics, 2023, 88(4):M213-M224.
[13] Su Y Q, Cao D P, Liu S Y, et al. Seismic impedance inversion based on deep learning with geophysical constraints[J]. Geoenergy Science and Engineering, 2023, 225:211671.
[14] 王蓉, 熊杰, 刘倩, 等. 基于深度神经网络的重力异常反演[J]. 物探与化探, 2022, 46(2):451-458.
[14] Wang R, Xiong J, Liu Q, et al. Inversion of gravity anomalies based on a deep neural network[J]. Geophysical and Geochemical Exploration, 2022, 46(2):451-458.
[15] 吴嵩, 宁晓斌, 杨庭伟, 等. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5):1298-1306.
[15] Wu S, Ning X B, Yang T W, et al. Neural network-based denoising for ground-penetrating radar data[J]. Geophysical and Geochemical Exploration, 2023, 47(5):1298-1306.
[16] 卞保力. 基于高密度三维地震河道砂体储层预测方法研究与应用[D]. 成都: 成都理工大学, 2019.
[16] Bian B L. Research and application of reservoir prediction method of channel sands based on high density three-dimensional seismic data[D]. Chengdu: Chengdu University of Technology, 2019.
[1] 史全党, 孔令业, 吴超, 丁艳雪, 刘泽民, 于雪, 王江. 基于小波边缘分析与井—震联合建模的波阻抗反演技术在陆梁隆起带储层预测中的应用[J]. 物探与化探, 2023, 47(6): 1425-1432.
[2] 王康, 刘彩云, 熊杰, 王永昌, 胡焕发, 康佳帅. 基于全卷积残差收缩网络的地震波阻抗反演[J]. 物探与化探, 2023, 47(6): 1538-1546.
[3] 朱剑兵, 高照奇, 田亚军, 梁兴城. 带有横向约束的全局优化波阻抗反演方法及应用[J]. 物探与化探, 2022, 46(6): 1477-1484.
[4] 冯磊, 周伟, 陈瑶, 李文吉. 航空物探工作程度图批量定制技术研究[J]. 物探与化探, 2019, 43(1): 153-160.
[5] 万晓明, 梁劲, 梁金强, 林霖, 沙志彬, 柴祎, 蔡振华. 叠后波阻抗无井反演技术在T研究区天然气水合物分布预测中的应用[J]. 物探与化探, 2016, 40(3): 438-444.
[6] 孙炜, 王彦春, 李梅, 杨锐, 郭海华, 李玉凤. 利用叠前地震数据预测火山岩储层裂缝[J]. 物探与化探, 2010, 34(2): 229-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com