Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 151-161    DOI: 10.11720/wtyht.2024.1103
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
均匀半空间CSAMT折线形线源的场源数值模拟
段跃权(), 刘云(), 王紫郡, 李雨珊
云南大学 地球科学学院,云南 昆明 650500
Numerical simulation of the field source for the CSAMT folded line source in a homogeneous half-space
DUAN Yue-Quan(), LIU Yun(), WANG Zi-Jun, LI Yu-Shan
School of Earth Sciences, Yunnan University, Kunming 650500, China
全文: PDF(5614 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

可控源音频大地电磁法(CSAMT)在野外进行测量时,通常认为发射线源是简化为长度极小的电偶极子源,但是在野外实测中,CSAMT发射线源都是折线形布设。本文在前人研究成果的基础上,根据电磁场的线性叠加原理推导出折线形电流线源激发的电磁场数值计算方法,通过对不同的折线形线源模型进行计算,分析均匀半空间情况下折线形线源对视电阻率、阻抗相位曲线的影响。模型计算表明折线形线源对视电阻率、阻抗相位曲线的近区和过渡区有较大影响,远区则不受影响;近区和过渡区受到的影响主要是由各个折线段的方位角引起,折线段方位角越大,对测点的视电阻率和阻抗相位的影响越大。当折线段方位角很小时,可以将其忽略并近似为直线源进行处理,这样既可以充分考虑发射源的形态又可以提高工作效率。为后续CSAMT数据处理的近场校正以及CSAMT数值模拟提供了理论支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段跃权
刘云
王紫郡
李雨珊
关键词 CSAMT非直线型接地电缆源均匀半空间折线形线源线性叠加    
Abstract

For field surveys using the controlled source audio magnetotelluric (CSAMT) method, it is generally believed that the CSAMT line source is a simplified electric dipole source with a minimal length. However, CSAMT line sources are all arranged in a folded line pattern in field surveys. Based on the previous research results, this study derived the numerical calculation method for the electromagnetic field excited by the folded line source according to the linear superposition principle of electromagnetic fields. Through the calculation of different folded line source models, this study analyzed the influences of the folded line source on the apparent resistivity and impedance phase curves in the homogeneous half-space. Model calculations demonstrate that the folded line source significantly influenced the near and transition zones of the apparent resistivity and impedance phase curves but had no influence on their far zones. The influences on the near and transition zones were primarily caused by the azimuths of folded line segments, and higher azimuths were associated with more significant influences on the apparent resistivity and impedance phase of survey points. In the case of very low azimuth angles, the folded line source can be approximated as a straight line source for processing, improving the work efficiency while fully considering the morphology of the emission source. This study provides theoretical support for the near-field correction of subsequent CSAMT data processing and the CSAMT numerical simulation.

Key wordsCSAMT    non-linear ground cable source    homogeneous half-space    folded line source    linear superposition
收稿日期: 2023-03-14      修回日期: 2023-06-06      出版日期: 2024-02-20
ZTFLH:  P319.3  
基金资助:云南大学第十四届研究生科研创新项目(KC-22221593)
通讯作者: 刘云(1973-),男,博士,副研究员,主要从事地球物理数值模拟与反演成像技术研究工作。Email:liu_yun@mail.gyig.ac.cn
作者简介: 段跃权(1999-),男,硕士,主要从事电磁场数值模拟及反演成像工作。Email:3256667067@qq.com
引用本文:   
段跃权, 刘云, 王紫郡, 李雨珊. 均匀半空间CSAMT折线形线源的场源数值模拟[J]. 物探与化探, 2024, 48(1): 151-161.
DUAN Yue-Quan, LIU Yun, WANG Zi-Jun, LI Yu-Shan. Numerical simulation of the field source for the CSAMT folded line source in a homogeneous half-space. Geophysical and Geochemical Exploration, 2024, 48(1): 151-161.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1103      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/151
Fig.1  电流线源与测线相对位置
a—线源与测线平行;b—线源与测线呈任意方位角
Fig.2  任意形状电流线源剖分示意
Fig.3  发射源与测线呈任意方位角
Fig.4  发射源不同方位角对应的视电阻率和阻抗相位随频率的变化特征
a—不同方位角视电阻率随频率的变化曲线;b—不同方位角视电阻率相对误差曲线;c—不同方位角阻抗相位随频率的变化曲线;d—不同方位角阻抗相位绝对误差曲线
Fig.5  发射源不同方位角对应的视电阻率和阻抗相位随收发距的变化特征
a—不同方位角视电阻率随收发距的变化曲线;b—不同方位角视电阻率相对误差曲线;c—不同方位角阻抗相位随收发距的变化曲线;d—不同方位角阻抗相位绝对误差曲线
Fig.6  折线形发射源模型示意
a—发射源模型a,节点数为4;b—发射源模型b,节点数为5;c—发射源模型c,节点数为6
Fig.7  折线形线源不同方位角的视电阻率、阻抗相位随频率的变化特征
a—折线形线源不同方位角视电阻率随频率的变化曲线;b—折线形线源不同方位角视电阻率相对误差曲线;c—折线形线源不同方位角阻抗相位随频率的变化曲线;d—折线形线源不同方位角阻抗相位绝对误差曲线
Fig.8  折线形线源不同方位角的视电阻率、阻抗相位随收发距的变化特征
a—折线形线源不同方位角视电阻率随收发距的变化曲线;b—折线形线源不同方位角视电阻率相对误差曲线;c—折线形线源不同方位角阻抗相位随收发距的变化曲线;d—折线形线源不同方位角阻抗相位绝对误差曲线
Fig.9  不同节点数折线形线源的视电阻率、阻抗相位和误差曲线
a—发射源模型a、b、c的视电阻率曲线;b—发射源模型a、b、c之间视电阻率的相对误差曲线;c—发射源模型a、b、c的阻抗相位曲线;d—发射源模型a、b、c之间阻抗相位的绝对误差曲线
Fig.10  折线形线源简化示意
d—任意形状折线形发射源模型;e—简化后的折线形发射源模型
Fig.11  折线形发射源模型简化前后的视电阻率、阻抗相位对比
a—发射源模型简化前后的视电阻率曲线;b—发射源模型简化前后视电阻率相对误差曲线;c—发射源模型简化前后的阻抗相位曲线;d—发射源模型简化前后阻抗相位绝对误差曲线
[1] Goldstein M A, Strangway D W. Audio-frequency magnetotellurics with a grounded electric dipole source[J]. Geophysics, 1975, 40(4):669-683.
doi: 10.1190/1.1440558
[2] Grandis H, Sumintadireja P. A brief review for the proper application of magnetotelluric (MT) and controlled-source audio-frequency magnetotelluric (CSAMT) in geothermal exploration[C]// 12nd annual indonesian geothermal association meeting and conference, 2012.
[3] Di Q Y, Fu C M, An Z G, et al. An application of CSAMT for detecting weak geological structures near the deeply buried long tunnel of the Shijiazhuang-Taiyuan passenger railway line in the Taihang Mountains[J]. Engineering Geology, 2020, 268:105517.
doi: 10.1016/j.enggeo.2020.105517
[4] Wang G, Lei D, Zhang Z Y, et al. Tensor CSAMT and AMT studies of the xiarihamu Ni-Cu sulfide deposit in Qinghai,China[J]. Journal of Applied Geophysics, 2018, 159:795-802.
doi: 10.1016/j.jappgeo.2018.09.031
[5] Streich R. Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land[J]. Surveys in Geophysics, 2016, 37(1):47-80.
doi: 10.1007/s10712-015-9336-0
[6] 底青云, 薛国强, 殷长春, 等. 中国人工源电磁探测新方法[J]. 中国科学:地球科学, 2020, 50(9):1219-1227.
[6] Di Q Y, Xue G Q, Yin C C, et al. New methods of controlled-source electromagnetic detection in China[J]. Scientia Sinica:Terrae, 2020, 50(9):1219-1227.
doi: 10.1360/SSTe-2019-0162
[7] 何继善. 可控源音频大地电磁法[M]. 长沙: 中南工业大学出版社,1990.
[7] He J S. Controlled source audio magnetotelluric method[M]. Changsha: Central South University of Technology Press,1990.
[8] 韩元红, 申小龙, 李兵, 等. 基于综合物探的关中眉县构造裂隙型地热水靶区预测及钻孔验证[J]. 物探与化探, 2023, 47(1):65-72.
[8] Han Y H, Shen X L, Li B, et al. Target area prediction and drilling verification of the tectonic fissure-hosted geothermal water in Meixian County,Guanzhong Plain based on the integrated geophysical exploration[J]. Geophysical and Geochemical Exploration, 2023, 47(1):65-72.
[9] 王军成, 赵振国, 高士银, 等. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2):321-330.
[9] Wang J C, Zhao Z G, Gao S Y, et al. Application of a comprehensive geophysical exploration methods in the exploration of geothermal resources in Yueliangwan,Binhai County[J]. Geophysical and Geochemical Exploration, 2023, 47(2):321-330.
[10] 刘春伟, 王重, 胡彩萍, 等. 综合物探方法在胶东岩浆岩缺水山区找水中的应用[J]. 物探与化探, 2023, 47(2):512-522.
[10] Liu C W, Wang C, Hu C P, et al. Application of a comprehensive geophysical exploration methods to water exploration in magmatic rock mountainous areas with water shortage in Jiaodong Peninsula[J]. Geophysical and Geochemical Exploration, 2023, 47(2):512-522.
[11] Wang J L, Lin P R, Wang M, et al. A multiple parameter extraction and electromagnetic coupling correction technique for time domain induced polarisation full waveform data[J]. Exploration Geophysics, 2019, 50:113-123.
doi: 10.1080/08123985.2019.1584014
[12] 陈卫营, 薛国强, 崔江伟. 电性源瞬变电磁发射源形变对观测结果影响分析[J]. 地球物理学进展, 2015, 30(1):126-132.
[12] Chen W Y, Xue G Q, Cui J W. Analysis on the influence from the shape of electric source TEM transmitter[J]. Progress in Geophysics, 2015, 30(1):126-132.
[13] 李展辉, 黄清华. 任意形状水平接地导线源瞬变电磁法一维正反演研究[J]. 地球物理学进展, 2018, 33(4):1515-1525.
[13] Li Z H, Huang Q H. 1D forward modeling and inversion algorithm for grounded galvanic source TEM sounding with an arbitrary horizontal wire[J]. Progress in Geophysics, 2018, 33(4):1515-1525.
[14] 商天新, 张继锋, 冯兵, 等. 任意形状水平电性源瞬变电磁全区视电阻率计算[J]. 地球科学与环境学报, 2020, 42(6):749-758.
[14] Shang T X, Zhang J F, Feng B, et al. Calculation of all-time apparent resistivity for arbitrary horizontal electrical source transient electromagnetic method[J]. Journal of Earth Sciences and Environment, 2020, 42(6):749-758.
[15] 王鹏飞, 王书明, 安永宁. 不规则回线瞬变电磁法一维烟圈反演研究[J]. 地球物理学进展, 2019, 34(3):1113-1120.
[15] Wang P F, Wang S M, An Y N. One-dimensional smoke ring inversion of irregular loop source transient electromagnetic method[J]. Progress in Geophysics, 2019, 34(3):1113-1120.
[16] 李建平, 李桐林, 张亚东. 层状介质任意形状回线源瞬变电磁场正反演[J]. 物探与化探, 2012, 36(2):256-259.
[16] Li J P, Li T L, Zhang Y D. Tem forward and inversion of arbitrary shape loop source in layered media[J]. Geophysical and Geochemical Exploration, 2012, 36(2):256-259.
[17] 李建平, 李桐林, 赵雪峰, 等. 层状介质任意形状回线源瞬变电磁全区视电阻率的研究[J]. 地球物理学进展, 2007, 22(6):1777-1780.
[17] Li J P, Li T L, Zhao X F, et al. Study on the TEM all-time apparent resistivity of arbitrary shape loop source over the layered medium[J]. Progress in Geophysics, 2007, 22(6):1777-1780.
[18] 李建平, 李桐林, 张辉, 等. 不规则回线源层状介质瞬变电磁场正反演研究及应用[J]. 吉林大学学报:地球科学版, 2005, 35(6):790-795.
[18] Li J P, Li T L, Zhang H, et al. Study and application of the TEM forward and inversion problem of irregular loop source over the layered medium[J]. Journal of Jiling University:Earth Science Edition, 2005, 35(6):790-795.
[19] 刘云鹤, 殷长春, 翁爱华, 等. 海洋可控源电磁法发射源姿态影响研究[J]. 地球物理学报, 2012, 55(8):2757-2768.
[19] Liu Y H, Yin C C, Weng A H, et al. Attitude effect for marine CSEM system[J]. Chinese Journal of Geophysics, 2012, 55(8):2757-2768.
[20] 王若, 王妙月, 卢元林. 高山峡谷区CSAMT观测系统研究[J]. 地球物理学进展, 2004, 19(1):125-130.
[20] Wang R, Wang M Y, Lu Y L. CSAMT observation system study in high mountain and steep gorge area[J]. Progress In Geophysics, 2004, 19(1):125-130.
[21] 王艳波. 考虑发射源起伏的CSAMT一维正演研究[J]. 物探化探计算技术, 2016, 38(1):30-36.
[21] Wang Y B. 1D forward modeling of CSAMT on rolling source[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(1):30-36.
[22] 周子琨, 翁爱华. 不规则发射源对可控源电磁测深的影响规律[C]// 2018年中国地球科学联合学术年会论文集(二十二)——专题45:海洋地球物理、专题46:电磁地球物理学研究应用及其新进展.北京, 2018:66-67.
[23] 张斌, 谭捍东. 带地形的可控源音频大地电磁法二维正演[J]. 物探与化探, 2014, 38(1):151-156.
[23] Zhang B, Tan H D. The two-dimensional csamt modeling with topography[J]. Geophysical and Geochemical Exploration, 2014, 38(1):151-156.
[24] Xiong Z T, Tang X G, Li D D, et al. Linear source CSAMT response simulation in the 2D anisotropic formation with topography[J]. Journal of Applied Geophysics, 2019, 171:103861.
doi: 10.1016/j.jappgeo.2019.103861
[25] 陈小斌, 赵国泽. 关于人工源极低频电磁波发射源的讨论——均匀空间交流点电流源的解[J]. 地球物理学报, 2009, 52(8):2158-2164.
[25] Chen X B, Zhao G Z. Study on the transmitting mechanism of CSELF waves:Response of the alternating current point source in the uniform space[J]. Chinese Journal of Geophysics, 2009, 52(8):2158-2164.
[26] 刘地渊, 徐凯军, 赵广茂, 等. 任意形状线电流源三维地电场研究[J]. 地球物理学进展, 2006, 21(2):395-399.
[26] Liu D Y, Xu K J, Zhao G M, et al. The study of three-dimensional geo-electric field of arbitrary shape line sources[J]. Progress in Geophysics, 2006, 21(2):395-399.
[27] 苏巍, 李大俊, 翁爱华. 均匀半空间有限长接地导线源地面电场响应特征[J]. 地质与勘探, 2019, 55(3):801-808.
[27] Su W, Li D J, Weng A H. Characteristics of the electric field generated by a finite-length-ground wire source in homogeneous half-space[J]. Geology and Exploration, 2019, 55(3):801-808.
[28] Nabighian M. Electromagnetic methods in applied geophysics[M]. Tulsa: Society of Exploration Geophysicists,1988.
[29] 徐士良. 计算机常用算法[M]. 北京: 清华大学出版社,1995.
[29] Xu S L. Common computer algorithms[M]. Beijing: Tsinghua University Press,1995.
[30] 刘云, 宋滔, 王赟. 大定源回线瞬变电磁场数值滤波算法[J]. 物探化探计算技术, 2016, 38(4):437-442.
[30] Liu Y, Song T, Wang Y. A digital filter method for evaluating the fixed-loop transient electromagnetic field[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(4):437-442.
[31] 何光渝, 高永利. Visual Fortran常用数值算法集[M]. 北京: 科学出版社, 2002.
[31] He G Y, Gao Y L. Visual Fortran commonly used numerical algorithm set[M]. Beijing: Science Press, 2002.
[32] Wang X X, Deng J Z. A comparative study on the difference between the multi-dipole sources and vector synthesis source[J]. Journal of Environmental and Engineering Geophysics, 2020, 25(4):529-543.
doi: 10.32389/JEEG20-012
[33] 王显祥, 底青云, 许诚. CSAMT的多偶极子源特征与张量测量[J]. 地球物理学报, 2014, 57(2):651-661.
[33] Wang X X, Di Q Y, Xu C. Characteristics of multiple sources and tensor measurement in CSAMT[J]. Chinese Journal of Geophysics, 2014, 57(2):651-661.
[34] Kaufman A A, Keller G V. Frequency and transient soundings[M]. Amsterdam: Elsevier Scientific Pub.Co.,1983.
[1] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[2] 张健, 冯旭亮, 岳想平. 综合物探方法在隐伏岩溶探测中的应用[J]. 物探与化探, 2022, 46(6): 1403-1410.
[3] 虎新军, 陈晓晶, 李宁生, 仵阳, 陈涛涛. 银川盆地东缘黄河断裂展布特征新认识[J]. 物探与化探, 2021, 45(4): 913-922.
[4] 李英宾. 可控源音频大地电磁测量对腾格尔坳陷东北缘下白垩统赛汉组砂体的识别及其地质意义[J]. 物探与化探, 2021, 45(3): 616-623.
[5] 陈小龙, 高坡, 程顺达, 王晓青, 罗可. 西藏帮浦东段—笛给铅锌矿区CSAMT异常特征与深部找矿预测[J]. 物探与化探, 2021, 45(2): 361-368.
[6] 吴旭亮, 武勇强, 李茂. 浩然柴达木地区下白垩统华池—环河组砂体发育特征[J]. 物探与化探, 2020, 44(4): 742-747.
[7] 张超, 陈大磊, 王阳, 王洪军. 层状介质下张量CSAMT最小收发距研究[J]. 物探与化探, 2020, 44(1): 156-164.
[8] 王振亮, 邓友茂, 孟银生, 刘瑞德. 综合物探方法在维拉斯托铜多金属矿床北侧寻找隐伏矿体的应用[J]. 物探与化探, 2019, 43(5): 958-965.
[9] 吴燕清, 王世成, 丁园, 王青, 王文正. 氡气及CSAMT联合探测在内蒙古五十家子盆地铀矿勘查中的应用研究[J]. 物探与化探, 2019, 43(4): 726-733.
[10] 邓中俊, 杨玉波, 姚成林, 贾永梅, 李春风. 综合物探在地面塌陷区探测中的应用[J]. 物探与化探, 2019, 43(2): 441-448.
[11] 雷晓东, 李巧灵, 李晨, 王元, 关伟, 杨全合. 北京平原区西北部隐伏岩体的空间分布特征[J]. 物探与化探, 2018, 42(6): 1125-1133.
[12] 李荡, 郑采君, 林品荣, 王珺璐, 李建华, 李勇. 基于电容补偿技术的电性源CSAMT高频供电研究[J]. 物探与化探, 2018, 42(6): 1253-1258.
[13] 何柯, 李建华, 赵远程, 魏文博, 叶高峰, 王刚. 砂岩型铀矿地浸浸出液溶质运移过程的综合地球物理监测[J]. 物探与化探, 2018, 42(3): 442-452.
[14] 曹强, 林昌洪, 谭捍东, 龚应丽. 可控源音频大地电磁法方位非各向同性层状介质Occam反演[J]. 物探与化探, 2016, 40(3): 594-602.
[15] 张凯飞. 基于电性约束的NLCG反演在CSAMT资料中的应用[J]. 物探与化探, 2016, 40(3): 629-634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com