E-mail Alert Rss
 

物探与化探, 2023, 47(3): 575-583 doi: 10.11720/wtyht.2023.1474

“2022年重磁方法理论及应用研究专题研讨会”专栏

基于不等式和Gramian约束的MT和重力正则化联合反演

陈晓,1,2, 曾志文,3, 邓居智1,2, 张志勇1,2, 陈辉1,2, 余辉1,2, 王彦国1,2

1.东华理工大学 核资源与环境省部共建国家重点实验室,江西 南昌 330013

2.东华理工大学 地球物理与测控技术学院,江西 南昌 330013

3.吉林大学 地球探测科学与技术学院,吉林 长春 130026

Regularized joint inversion of magnetotelluric and gravity data based on inequality and Gramian constraints

CHEN Xiao,1,2, ZENG Zhi-Wen,3, DENG Ju-Zhi1,2, ZHANG Zhi-Yong1,2, CHEN Hui1,2, YU Hui1,2, WANG Yan-Guo1,2

1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China

2. School of Geophysics and Measurement-control Technology, East China University of Technology, Nanchang 330013, China

3. College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China

通讯作者: 曾志文(1995-),男,博士研究生,主要研究方向为地球物理反演及联合反演。Email:zengzwxs@hotmail.com

第一作者: 陈晓(1986-),男,博士,副教授,主要研究方向为地球物理反演及联合反演。Email:dwjhtj@hotmail.com

责任编辑: 王萌

收稿日期: 2022-09-21   修回日期: 2023-01-20  

基金资助: 国家自然科学基金项目(42064008)
国家自然科学基金项目(41604104)
国家自然科学基金项目(42130811)
国家自然科学基金项目(42164008)
国家自然科学基金项目(41864004)
江西省自然科学基金项目(20224BAB203046)
江西省自然科学基金项目(20171BAB213031)
江西省自然科学基金项目(20204BCJL23058)
江西省地质局科技研究项目(2023JXDZKJKY03)

Received: 2022-09-21   Revised: 2023-01-20  

摘要

基于Gramian约束的正则化联合反演是目前地球物理联合反演领域的研究热点。鉴于正则化项和约束项权重系数选择的困难性,有必要在正则化联合反演中引入不等式约束。本文以基于Gramian约束的大地电磁测深法(MT)和重力正则化联合反演为例,对比了惩罚函数法和转换函数法在联合反演中的应用效果,并开展了江西相山某测线的实测资料处理。模型试验表明,惩罚函数法和转换函数法可以有效地将物性参数约束在一定范围之内,惩罚函数法具有更高的灵活性但需要人为设置惩罚函数的权重系数。实测数据的处理表明,基于不等式和Gramian约束的联合反演具有较高的实用性,提高了地球物理解释的精度。

关键词: 联合反演; Gramian约束; 不等式约束; 正则化; 江西相山

Abstract

Regularized joint inversion based on Gramian constraints is a hot research topic in the field of geophysical joint inversion. Given the difficulty in selecting weighted factors of the regularization and constraint items, it is necessary to introduce inequality constraints into the regularized joint inversion. To investigate the regularized joint inversion of magnetotelluric (MT) and gravity data based on Gramian constraints, this study compared the application effects of the penalty function method and the transform function method in the joint inversion and processed the measured data of a survey line in Xiangshan, Jiangxi Province. According to the results from model experiments, both methods can effectively constrain petrophysical parameters, and the penalty function method has higher flexibility but requires the artificial setting of the weighted factors. Moreover, the processing of the measured data shows that the joint inversion based on inequality and Gramian constraints is highly practical and can improve the precision of geophysical interpretation.

Keywords: joint inversion; Gramian constraint; inequality constraint; regularized; Xiangshan, Jiangxi

PDF (4544KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈晓, 曾志文, 邓居智, 张志勇, 陈辉, 余辉, 王彦国. 基于不等式和Gramian约束的MT和重力正则化联合反演[J]. 物探与化探, 2023, 47(3): 575-583 doi:10.11720/wtyht.2023.1474

CHEN Xiao, ZENG Zhi-Wen, DENG Ju-Zhi, ZHANG Zhi-Yong, CHEN Hui, YU Hui, WANG Yan-Guo. Regularized joint inversion of magnetotelluric and gravity data based on inequality and Gramian constraints[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 575-583 doi:10.11720/wtyht.2023.1474

0 引言

地球物理联合反演是综合地球物理领域中重要的方法,可促进不同的地球物理方法互为补充、约束,进而降低解的多解性。根据联合反演的约束方式来分,地球物理联合反演可以分为物性约束[1-2]和构造约束[3-4]2大类。Zhdanov等[5]根据Gramian矩阵的数学特性,提出了一种面向地球物理联合反演的广义的约束方式,即Gramian约束,并将其作为一种稳定泛函写入联合反演目标函数中。在Gramian约束中,参与约束的向量的表达形式可以是多样的:若向量为物性向量,该约束可视为物性约束;若向量为物性梯度向量,该约束可视为构造约束。Gramian约束项的模是大于等于0的,当且仅当参与约束的向量组线性相关时取0。目前,该约束已被应用于多种地球物理方法组合的联合反演:重力和磁法[6]、重力和地震[7]、磁法和电磁[8]、重力和电磁[9]、时间域和频率域电磁法[10]联合反演,是地球物理联合反演领域的研究热点。

需要指出的是,在地球物理正则化联合反演领域,约束项权重系数的选择依然是待攻关的难题。目前,该权重系数的处理方案大体可以分为3种:衰减的[11]、上升的[12]、还有设置为某一定值的[13]。在Gramian约束联合反演中,该权重系数是以衰减式处理为主[9,11,14]。毫无疑问,约束项权重系数和正则化因子的联动调整是更加困难的。这就使得如下问题凸显出来:①与单一地球物理方法的正则化反演仅需考虑正则化项的权重不同,正则化联合反演则需要分别确定正则化项和约束项的权重。权重系数的“不当”设置是否会导致物性参数出现大值或小值?②如果上述问题的存在,在基于不等式约束的联合反演中,不同的“范围约束”实现方法各有什么特点?

基于此,本文尝试利用惩罚函数或转换函数方法,开展基于不等式和Gramian约束的大地电磁测深(MT)和重力正则化联合反演,并利用江西相山某测线的数据来验证方法的实用性。

1 方法原理

1.1 Gramian约束

Zhdanov等[5]将Gramian矩阵引入地球物理联合反演。其表达式如下:

pG(n)2=(p,p)G(n)=G(m(1),m(2),m(n-1),p)=(m(1),m(1))M(m(1),m(2))M(m(1),m(n-1))M(m(1),p)M(m(2),m(1))M(m(2),m(2))M(m(2),m(n-1))M(m(2),p)M(m(n-1),m(1))M(m(n-1),m(2))M(m(n-1),m(n-1))M(m(n-1),p)M(p,m(1))M(p,m(2))M(p,m(n-1))M(p,p)M0

式中:pG(n)2的模等于Gramian矩阵(m(1),m(2),m(n-1),p)的行列式;(p,p)G(n)为内积运算;p为模型空间的函数;m为待解参数。上式当且仅当向量组(m(1),m(2),m(n-1),p)线性相关时为0。

在MT和重力联合反演中,若只考虑密度和电阻率2种物性参数之间的线性相关约束,则式(1)可以简化为

G(mG,mMT)=(mG,mG)M(mG,mMT)M(mMT,mG)M(mMT,mMT)M0

式中:G为密度和电阻率2个物性参数组成的Gramian约束项,上标GMT分别代表重力和MT方法反演的特解参数,即密度和电阻率。Gramian约束项对待解参数的偏导数可写为:

GmMT=IMT=mMTmG,mG-mGmG,mMT
GmG=IG=mGmMT,mMT-mMTmMT,mG

1.2 不等式约束

在地球物理反演领域中,先验的物性信息通常在一个范围内,即存在上限和下限,而不是某一个确定的值。转换函数法和惩罚函数法是2种典型的、可以实现岩石物性参数“范围约束”的方法。

1.2.1 转换函数法

转换函数法的表达方式是多样的,如基于对数函数的[15]、基于反双曲正切函数的[16]等。本文选择基于对数函数的转换函数来实现对物性参数的不等式约束,假如已知待解参数mk满足如下条件:

akmkbk

其中:a,b为待解参数的下限和上限;k为迭代次数。令

xk=1plnmk-akbk-mk

则相应的反变换为

mk=ak+bkexppxk1+exppxk,  -<xk<

1.2.2 惩罚函数法

惩罚函数法[17]直接将约束信息写入目标函数中。假如待解参数满足式(5),则惩罚函数C可写为

C=i=1Nmin0,him2

其中:N是不等式的总数,对于式(5)而言,N=2。则himk的形式为:

h1mk=mk-ak
h2mk=bk-mk

1.3 MT和重力联合反演的实现

基于Gramian约束的MT和重力数据的正则化联合反演的目标函数可写为:

Pα(mG,mMT)=λGφG+αGSG+λMTφMT+αMTSMT+      γG(mG,mMT)     =λGdG-dobsg2+αGmG-maprG2+      λMTdMT-dobsMT2+αMT      mMT-maprMT2+γG(mG,mMT)

其中:Pα(mG,mMT)表示参数函数;φSG分别为数据拟合泛函、模型稳定泛函和Gramian约束项;λαγ分别为数据拟合泛函的权重系数、正则化因子、约束项权重系数;下标apr代表先验模型。

式(11)存在大量的权重系数,若直接对其进行极小化处理,无疑存在较大的困难。故此,本文对其进行交替式处理,即交替地利用前一次迭代获得的岩石物性模型去影响当前迭代其他的岩石物性模型[20],式(11)可以写为

pk(mG)=φG(mG)+αGSG(mG)+γGG(mG,mk-1MT),pk(mMT)=φMT(mMT)+αMTSMT(mMT)+    γMTG(mMT,mk-1G),

因此,基于惩罚泛函和Gramian约束的联合反演目标函数可写为:

pk(mG)=φG(mG)+αGSG(mG)+γGG(mG,mk-1MT)+    μGCmG,pk(mMT)=φMT(mMT)+αMTSMT(mMT)+    γMTG(mMT,mk-1G)+μMTCmMT,

其中:μ表示惩罚函数项的权重系数。

本文对正则化因子和Gramian约束项权重系数进行衰减式处理,分别利用数据拟合项和模型约束项、数据拟合项和Gramian约束项的比值设为正则化因子和约束项权重系数的初值:

α0i=n×φi(mi)Sg(mg),γ0i=n×φi(mi)Gi(mi,m0j),

其中:i,j代表不同的地球物理方法;n为缩放系数。

在数据拟合效率下降时,对正则化因子和约束项权重系数进行衰减处理:

αki=αk-1iq,γki=λk-1iq,

其中:q为衰减系数,nq的选择以保证目标函数的收敛性为基本要求。

本文采用选择成熟、高效的共轭梯度算法来实现目标函数的极小化。基于惩罚函数或转换函数的共轭梯度算法,以及惩罚函数项和转换函数项对待解参数的偏导数,在作者以往的文献[18-20]中有详细介绍,本文不在赘述。

2 模型试验

2.1 模型试验1

本文设计了如图1所示的地球物理模型,在背景电阻率为100 Ω·m、背景剩余密度为0 g/cm3的均匀半空间中,存在2个异常体。模拟测点为40个,测点间距为500 m。MT的模拟频点为12个(0.01、0.03、0.1、0.3、1、3、5、10、15、30、50、100 Hz),联合反演共迭代40次。

图1

图1   模型试验1不同方案的联合反演结果

a—设计的剩余密度模型;b—设计的电阻率模型;c—方案1剩余密度结果;d—方案1电阻率结果;e—方案2剩余密度结果;f—方案2电阻率结果;g—方案3剩余密度结果;h—方案3电阻率结果;i—重力异常拟合曲线

Fig.1   Joint inversed results of different projects for the model test 1

a—designed residual density model;b—designed resistivity model;c—residual density result of project 1;d—resistivity result of project 1; e—residual density result of project 2;f—resistivity result of project 2;g—residual density result of project 3 ;h—resistivity result of project 3;i—fitting curves of gravity anomalies


本次试验按照式(14)和式(15)自适应确定正则化因子、约束项权重系数的取值,并设计了如下的对比方案来讨论正则化项和约束项对联合反演的影响:方案一,n=0.1,q=0.95;方案二,n=0.5,q=0.95;方案三,n=0.8,q=0.95。不同方案的联合反演结果见图1c~h;不同方案的重力异常拟合曲线参见图1i

对比分析图1,可以看出将缩放系数设为0.8显然是“过大”的,此时,剩余密度反演结果中出现了大值,也直接影响了重力异常曲线的拟合。故此,在联合反演过程中,有必要引入不等式约束以保证物性参数被约束在一定范围之内。

2.2 模型试验2

为了验证不等式约束的效果,本次试验沿用2.1节中的地球物理模型,缩放系数n取0.8,分别引入转换函数法和惩罚函数法来实现物性参数的范围约束,将剩余密度的范围设置为0~0.2 g/cm3

本文共设计了3种方案:方案1,基于转换函数约束的联合反演;方案2,基于惩罚函数约束的联合反演,惩罚函数的权重系数μ设为2.0;方案3,基于惩罚函数约束的联合反演,惩罚函数的权重系数μ设为10.0。不同方案的联合反演结果见图2a~f;不同方案的重力异常拟合曲线参见图2g

图2

图2   模型试验2不同方案的联合反演结果

a—方案1剩余密度结果;b—方案1电阻率结果;c—方案2剩余密度结果;d—方案2电阻率结果;e—方案3剩余密度结果;f—方案3电阻率结果;g—重力异常拟合曲线

Fig.2   Joint inversed results of different projects for the model test 2

a—residual density result of project 1;b—resistivity result of project 1; c—residual density result of project 2;d—resistivity result of project 2;e—residual density result of project 3;f—resistivity result of project 3;g—fitting curves of gravity anomalies


对比分析图2,可以看出,在如2.1节所示的权重系数“不当”的条件下,不管是基于转换函数约束的方案1或者基于惩罚函数的方案2和方案3均取得了较符合真实模型形态的结果。此外,在惩罚函数项权重因子较小的联合反演结果中(图2c),依然存在物性范围超出的现象。

综合模型试验1和2,可以看出:①鉴于联合反演中正则化项和约束项权重系数选择的困难性,有必要在正则化联合反演过程中开展不等式约束;②转换函数和惩罚函数方案都可以将物性参数约束在一定范围内,与转换函数方法相比,惩罚函数法更加灵活,但需要确定惩罚函数约束项的权重系数;③目前地球物理反演、联合反演中的先验信息主要来源于测井、钻孔、标本的测量,是存在一定误差的。故此,本文建议:在先验物性信息可信度较高的时候,选用转换函数方法来实现物性参数的不等式约束;反之,选择惩罚函数方法来实现物性参数的不等式约束。

3 实测资料处理

本文选取了江西相山地区的某测线来检验基于不等式和Gramian约束的MT和重力正则化联合反演的实用性。江西相山火山盆地产出我国规模最大、品位最富的火山岩型铀矿床,是国内最为重要的铀资源生产基地之一[21]图3中的圆点为MT测点的位置,共18个测点,重力测线与MT测线重合,重力异常为经过迭代插值切割法[22]处理的浅部场。

图3

图3   相山火山盆地某测线位置

Fig.3   Position map of a profile in the Xiangshan volcanic basin


岩石物性是引起各种地球物理异常的基本前提,同时也是地质和地球物理之间联系的纽带。结合参考文献[21]整理了如表1所示的该区域的电阻率和密度资料。根据表1可以看出,变质岩与火成岩之间存在明显的密度差异。

表1   相山火山盆地岩石物性统计结果

Table 1  Statistical results of petrophysical properties of Xiangshan volcanic basin

岩性σ平均/(g·cm-3)ρ/ (Ω·m)
碎斑熔岩2.63 (2.61~2.65),低6000 (400~400000),大部分>5000
流纹英安岩2.69 (2.65~2.72),中等2685,大部分<5000,偏低
变质岩2.77 (>2.72),高低阻样本为3451,高阻样本为31092

新窗口打开| 下载CSV


首先,对该测线进行了3D电阻率反演处理[23],反演结果如图4所示。根据物性统计结果,确定图4中黑线为变质岩基底的顶面,该顶面之上还存在浅部的高阻区域和深部的低阻区域,这与碎斑熔岩和流纹英安岩相对应。此外,可以看出,深部变质岩的电阻率分布在横向上是不均匀的,推测图中蓝线和黄线为可能的电性边界。

图4

图4   某MT测线3D电阻率反演结果

Fig.4   3D inversed resistivity result of a MT profile


然后根据电阻率反演结果所揭示的变质岩的顶界信息和表1所示的密度统计特征,进行密度联合反演初始建模:变质岩密度统一设置为2.76 g/cm3,剩余密度设置为0 g/cm3,联合反演中的变质岩剩余密度约束范围为-0.05~0.05 g/cm3;火山岩密度统一设置为2.65 g/cm3,剩余密度为-0.11 g/cm3,联合反演中的火成岩剩余密度约束范围为-0.16~0.06 g/cm3

最后,将图4所示的电阻率模型作为先验信息融入Gramian约束项,进而开展密度联合反演。在联合反演过程中,利用式(14)和式(15)确定正则化因子、Gramian约束项的权重系数,衰减系数设置为0.95,惩罚函数的权重系数设置为100。

鉴于深部电性特征的不均匀性,对变质岩基底进行分区域处理,并开展分区域Gramian约束联合反演[24]。本文设置了2种方案:方案1,按照图4中蓝线所示将整个变质岩区域划分为3部分;方案2,按照图4中黄线所示将整个变质岩区域划分为2部分。2种方案联合反演的密度结果见图5a5b,重力异常拟合曲线见图5c5d,密度和电阻率的耦合情况见图5e5f

图5

图5   不同方案的联合反演结果

a—方案1的剩余密度结果;b—方案2的剩余密度结果;c—方案1的重力异常拟合曲线;d—方案2的重力异常拟合曲线;e—方案1联合反演结果耦合;f—方案2联合反演结果耦合

Fig.5   Joint inversed results of different projects

a—joint inversed residual density result of project 1;b—joint inversed residual density result of project 2; c—gravity anomaly fitting curves of project 1;d—gravity anomaly fitting curves of project 2;e—coupling relationship for joint inversed results of project 1;f—coupling relationship for joint inversed results of project 2


图5a可以看出,先验的电阻率信息得到了有效融入;不同的联合反演方案条件下,重力异常曲线都得到了较好的拟合;方案1和方案2都可以促进剩余密度和电阻率的耦合,且被约束在设定的范围之内,这是不等式约束在发挥作用;在不同的分区域约束的条件下,2种方案的剩余密度结果是趋于一致的, 提示密度的横向不均匀分布与方案2的划分更一致。

文献[23]曾基于该测线3D MT的反演结果(图6a)开展了解释工作:浅层高阻层R3和下伏的高导层C3组成了白垩世火山岩盖层,分别是高阻的碎斑熔岩和低阻的流纹英安岩;深部高阻的R4和R5为变质岩基底;推测了断裂F2b,该断裂地表位置与已知断裂重合,是1条切穿变质岩基底的深断裂;F1b在深部沿着高阻异常R5向东下倾,推测其很可能控制着该地区花岗斑岩的侵入。

图6

图6   3D MT反演结果和联合反演的密度结果对比

a—3D MT反演结果;b—联合反演的剩余密度结果

Fig.6   Comparison diagram of 3D MT inversed result and joint inversed residual density result

a—3D MT inversed result;b—joint inversed residual density result


为了对比本文联合反演的效果,将MT的测点标在密度联合反演结果之上(图6b),与以往的解释结果[23]进行了对比:与浅部相比,本文密度联合反演在深部存在明显的高密度分布,这与变质岩基底相对应,变质岩基底的密度也存在着横向不均匀性,这与物性统计信息是相符的。此外,黄线所示的密度边界与断裂F2b位置一致,密度联合反演的最右端也存在密度的陡变,这与断裂F1b的位置是对应的。

综上所述,本文成功利用基于不等式和Gramian约束的MT和重力正则化联合反演成功揭示了研究区域的变质岩基底的顶界面和深部的断裂分布,所得认识与文献[23]利用3D电阻率反演获得的认识是一致的。

4 结论及讨论

本文分别利用惩罚函数法和指数变换法实现了基于不等式和Gramian约束的MT和重力正则化联合反演,模型试验和实测资料反馈表明:

1)联合反演的正则化项和约束项权重系数的选择是困难的,“不当”的权重系数会导致待解参数的分布超出“预期”,故此,有必要在地球物理正则化联合反演的实现过程中开展不等式约束;

2)转换函数以及惩罚函数均是实现不等式约束的有效手段,进而促进不同的岩石物性参数在一定范围内实现耦合。惩罚函数法对物性统计信息的精确度要求更低,但在联合反演的过程中需要确定惩罚函数的权重因子;

3)基于不等式和Gramian约束的正则化联合反演具有一定的实用性,可以促进不同的地球物理方法互相约束,互相印证,是开展综合地质地球物理定量解释的有效工具。

最后,需要指出的是,如何自适应地确定正则化因子、Gramian约束项权重系数以及惩罚函数权重系数值得进一步开展科研攻关。

参考文献

Sun J J, Li Y G.

Joint inversion of multiple geophysical data using guided fuzzy c-means clustering

[J]. Geophysics, 2016, 81(3):ID37-ID57.

DOI:10.1190/geo2015-0457.1      URL     [本文引用: 1]

Joint inversion of multiple geophysical data has become an active area of research due to its potential to greatly enhance the fidelity of inverted models. Many open questions and challenges still remain. One of them is how to effectively incorporate into joint inversion multimodal petrophysical information that describes the statistical behavior of physical property values in the parameter domain (i.e., in a crossplot). We have regarded the multimodal petrophysical data as different clusters in the parameter domain and developed an approach that handles multimodal petrophysical information through guided fuzzy c-means (FCM) clustering in the parameter domain. We inverted the petrophysical data in the parameter domain in a similar manner to and simultaneously with the geophysical data in the spatial domain through minimizing one common objective function. Numerical examples have determined that the resulting models from this multidomain joint-inversion strategy are able to reproduce both the geophysical and the petrophysical data. In addition to incorporating a priori multimodal petrophysical information into inversion, guided FCM clustering also allows us to integrate geology differentiation and geophysical inversion into one unified framework that makes these two components positively affect each other. Geology differentiation results were obtained as a direct output from joint inversion. We have also developed a strategy for imposing different clustering constraints in different model regions, allowing region-specific a priori petrophysical information to be incorporated into inversion. We have applied our joint-inversion algorithm to the SEG/EAGE salt model in four different scenarios, and we found that the proposed algorithm produced much better geophysical models and geology differentiation results than separate inversions.

陈晓, 于鹏, 邓居智, .

基于宽范围岩石物性约束的大地电磁和地震联合反演

[J]. 地球物理学报, 2016, 59(12):4690-4700.

[本文引用: 1]

Chen X, Yu P, Deng J Z, et al.

Joint inversion of MT and seismic data based on wide-range constraints

[J]. Chinese Journal of Geophysics, 2016, 59(12),4690-4700.

[本文引用: 1]

Gallardo L A, Meju M A.

Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data

[J]. Geophysical Research Letters, 2003, 30(13):11-14.

DOI:10.1029/2001GL014464      URL     [本文引用: 1]

Molodtsov D M, Kashtan B, Rostov Y.

Joint inversion of seismic and magnetotelluric data with structural constraint based on dot product of image gradients

[C]// SEG Expanded Abstracts, 2011:740-744.

[本文引用: 1]

Zhdanov M S, Gribenko A, Wilson G.

Generalized joint inversion of multimodal geophysical data using Gramian constraints

[J]. Geophysical Research Letters, 2012, 39:L09301.

[本文引用: 2]

Zhu Y, Zhdanov M S.

Gramian constraints in the joint inversion of airborne gravity gradiometry and magnetic data

[C]// SEG Expanded Abstract, 2013:1166-1170.

[本文引用: 1]

Lin W, Zhdanov M S.

The Gramian method of joint inversion of the gravity gradiometry and seismic data

[J]. Pure and Applied Geophysics, 2019, 176(4):1659-1672.

DOI:10.1007/s00024-018-02088-x      [本文引用: 1]

Zhu Y.

Joint inversion of airborne magnetic and electromagnetic data:Case study in the Northwest Territories of Canada

[C]// SEG Expanded Abstract, 2015:864-868.

[本文引用: 1]

Jorgensen M.

Joint 3D inversion of gravity and MT data using Gramian constraints:A case study from Yellowstone

[C]// SEG Expanded Abstract, 2018:2307-2311.

[本文引用: 2]

Ogunbo J N.

Dotting the i and crossing the T of the entire MiT resistivity community by the Gramian constrained joint EM/electrical inversion

[C]// SEG Expanded Abstract, 2018:2587-2591.

[本文引用: 1]

Zhdanov M S.

Joint inversion of multimodal data using focusing stabilizers and Gramian constraints

[C]// SEG Expanded Abstracts, 2018:1430-1434.

[本文引用: 2]

Carter-McAuslan A, Lelievre P G, Farquharson C G.

A study of fuzzy c-means coupling for joint inversion,using seismic tomography and gravity data test scenarios

[J]. Geophysics, 2015, 80(1):W1-W15.

DOI:10.1190/geo2014-0056.1      URL     [本文引用: 1]

Joint inversion, the inversion of multiple geophysical data sets containing complementary information about the subsurface, has the potential to significantly improve inversion results by reducing the nonuniqueness of the inverse problem. One of the challenges of joint inversion is deciding how to couple the multiple physical property models. If a coupling approach is used that is inconsistent with the physical truth, then inversion artifacts can occur and may lead to incorrect interpretations. In this paper, we investigated the fuzzy c-means (FCM) clustering approach to provide a lithological coupling of the seismic velocity and density models in joint 2D inversions of first-arrival traveltimes and gravity data. Even though this coupling approach has been used in previous works, recommendations for its effective use have not yet been developed. We conducted a suite of joint inversion tests on synthetic data generated from a geologically realistic model based on magmatic massive sulfide deposits. There is a known relationship between seismic velocity and density for the silicate rocks and sulfide minerals involved; this lithological relationship was used to design a clustered coupling strategy in the joint inversions. The tests we conducted clearly exhibited the benefits of joint inversion using FCM coupling. Our work revealed the effects of including inaccurate a priori physical property information. We also evaluated approaches to assess whether such inaccurate information may have been used.

Moorkamp M, Roberts A W, Jegen M, et al.

Verification of velocity-resistivity relationships derived from structural joint inversion with borehole data

[J]. Geophysical Research Letters, 2013, 40(14),3596-3601.

DOI:10.1002/grl.50696      URL     [本文引用: 1]

Lin W, Zhdanov M S.

Joint multinary inversion of gravity and magnetic data using Gramian constraints

[J]. Geophysical Journal International, 2018, 215(3),1540-1557.

[本文引用: 1]

Li Y G, Oldenburg W D.

Fast inversion of large-scale magnetic data using wavelet transform and a logarithmic barrier method

[J]. Geophysics Journal International, 2003, 152(2):251-265.

DOI:10.1046/j.1365-246X.2003.01766.x      URL     [本文引用: 1]

Commer M, Newman G A.

New advances in three-dimensional controlled-source electromagnetic inversion

[J]. Geophysical Journal International, 2008, 172(2):513-535.

DOI:10.1111/gji.2008.172.issue-2      URL     [本文引用: 1]

王智, 潘和平, 骆玉虎, .

基于不等式约束的井地电阻率法三维非线性共轭梯度反演研究

[J]. 地球物理学进展, 2016, 31(1):360-370.

[本文引用: 1]

Wang Z, Pan H P, Luo Y L, et al.

3D hole-to surface resistivity inversion with nonlinear conjugate gradients method under the constraint of inequality

[J]. Progress in Geophysics, 2016, 31(1):360-370.

[本文引用: 1]

Hu W, Abubakar A, Habashy T M.

Joint electromagnetic and seismic inversion using structural constraints

[J]. Geophysics, 2009, 74(6):R99-R109.

DOI:10.1190/1.3246586      URL     [本文引用: 1]

We have developed a frequency-domain joint electromagnetic (EM) and seismic inversion algorithm for reservoir evaluation and exploration applications. EM and seismic data are jointly inverted using a cross-gradient constraint that enforces structural similarity between the conductivity image and the compressional wave (P-wave) velocity image. The inversion algorithm is based on a Gauss-Newton optimization approach. Because of the ill-posed nature of the inverse problem, regularization is used to constrain the solution. The multiplicative regularization technique selects the regularization parameters automatically, improving the robustness of the algorithm. A multifrequency data-weighting scheme prevents the high-frequency data from dominating the inversion process. When the joint-inversion algorithm is applied in integrating marine controlled-source electromagnetic data with surface seismic data for subsea reservoir exploration applications and in integrating crosswell EM and sonic data for reservoir monitoring and evaluation applications, results improve significantly over those obtained from separate EM or seismic inversions.

郭一豪, 陈晓, 曾志文.

基于Gramian和惩罚函数约束的MT和重力联合反演

[J]. 江西科学, 2021, 39(1):94-98.

[本文引用: 1]

Guo Y H, Chen X, Zeng Z W.

Joint inversion of MT and gravity based on Gramian and penalty function constraints

[J]. Jiangxi Science, 2021, 39(1):94-98.

[本文引用: 1]

刘星, 邓居智, 陈晓.

基于不等式约束的重力三维聚焦反演

[J]. 科学技术与工程, 2020, 20(30):12332-12341.

[本文引用: 2]

Liu X, Deng J Z, Chen X.

Three-dimensional focusing inversion to gravity data based on inequality constraints

[J]. Science Technology and Engineering, 2020, 20(30):12332-12341.

[本文引用: 2]

余辉. 相山火山盆地穿地壳岩浆系统的三维精细结构及动力学背景[D]. 南昌: 东华理工大学, 2021.

[本文引用: 2]

Yu H. Three-dimensional fine structure and geodynamics setting of transcrustal magmatic system beneath the Xiangshan volcanic basin[D]. Nanchang: East China University of Technology, 2021.

[本文引用: 2]

汪炳柱, 徐世浙, 刘保华, .

多次插值切割法分场的一个实例

[J]. 石油地球物理勘探, 1997, 32(3):431-438,462.

[本文引用: 1]

Wang B Z, Xu S Z, Liu B H, et al.

An example of aeromagnetic anomaly separation using multi-interpolation division

[J]. Oil Geophysical Prospecting, 1997, 32(3):431-438,462.

[本文引用: 1]

Deng J Z, Yu H, Chen H, et al.

Ore-controlling structures of the Xiangshan volcanic basin,SE China:Revealed from three-dimensional inversion of magnetotelluric data

[J]. Ore Geology Reviews, 2020, 127(0):103807.

DOI:10.1016/j.oregeorev.2020.103807      URL     [本文引用: 4]

郭一豪. 基于Gramian约束的大地电磁与重力正则化联合反演研究[D]. 南昌: 东华理工大学, 2020.

[本文引用: 1]

Guo Y H. Study on regularized joint inversion of magnetotelluric and gravity based on Gramian constraints[D]. Nanchang: East China University of Technology, 2020.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com