Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (1): 178-185    DOI: 10.11720/wtyht.2021.1420
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
直升机TEM测量影响因素分析
单希鹏, 谢汝宽, 梁盛军, 余学中
中国自然资源航空物探遥感中心,北京 100083
An analysis of the influencing factors of helicopter TEM survey
SHAN Xi-Peng, XIE Ru-Kuan, LIANG Sheng-Jun, YU Xue-Zhong
China Aero Geophysical Survey and Remote Sensing Center for Nature Resources,Beijing 100083,China
全文: PDF(4531 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

直升机TEM被广泛应用于矿产、水文地质勘查等领域,该测量方法在国内还处于发展阶段,且飞行难度大,总结其野外测量流程、分析野外测量影响因素,对于今后直升机TEM飞行作业具有实际意义。笔者结合雄安新区白洋淀和雄县两个测区实测资料,对直升机TEM野外测量主要环节中存在的影响因素进行了分析,并提出了相应的建议,如机型选择、直升机起降点、天气、飞行高度、速度、飞行计划及测量系统稳定性监控等,为今后直升机TEM测量飞行提供参考经验。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
单希鹏
谢汝宽
梁盛军
余学中
关键词 直升机TEM雄安新区测量影响因素测量系统稳定性    
Abstract

Helicopter TEM is widely used in mineral resources,hydrogeology and other fields.Summarizing the field survey process and analyzing the influencing factors of field survey have practical significance for future helicopter TEM flight operations.Based on the actual survey data from the two survey areas of Baiyangdian and Xiongxian in Xiong'an New Area,the authors analyzed the influencing factors in each link of the helicopter TEM field survey,investigated the model,and put forward suggestions in such aspects as the choice of take-off and landing points,the flight in different weathers,the flight height and speed,flight plan formulation,survey system stability monitoring and other aspects,thus providing reference experience for future helicopter TEM survey.

Key wordshelicopter TEM    Xiong'an New Area    influencing factors of survey    survey system stability
收稿日期: 2020-08-26      修回日期: 2020-12-24      出版日期: 2021-02-20
ZTFLH:  P631.4  
基金资助:中国地质调查局地质调查项目“雄安新区资源环境承载能力综合监测和透明雄安数字平台建设(航遥中心)”(DD20189143)
作者简介: 单希鹏(1989-),男,工程师,主要从事航空物探数据采集、处理与解释工作。
引用本文:   
单希鹏, 谢汝宽, 梁盛军, 余学中. 直升机TEM测量影响因素分析[J]. 物探与化探, 2021, 45(1): 178-185.
SHAN Xi-Peng, XIE Ru-Kuan, LIANG Sheng-Jun, YU Xue-Zhong. An analysis of the influencing factors of helicopter TEM survey. Geophysical and Geochemical Exploration, 2021, 45(1): 178-185.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1420      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I1/178
Fig.1  直升机TEM工作原理示意
机型 最大起飞
质量/kg
最大航程
(无余油)/km
发动机数
/个
单发最大连续
功率/kW
单发最大起飞
功率/kW
空客
AS350B3
2250(标配)
2370(选装)
650 1 543 632
昌飞
AC311A
2250 630 1 543 632
哈飞
AC312E
4250 709 2 685 735
Table 1  3种直升机主要性能指标
Fig.2  雄县测区起降点与测区位置示意
Fig.3  L11890线不同飞行高度电磁响应
a—吊舱平均高度40 m;b—吊舱平均高度80 m;c—吊舱平均高度120 m
Fig.4  实测数据电磁响应
Fig.5  不同飞行速度下AeroTEM系统噪声示意
a—悬停;b—30节速度;c—40节速度;d—50节速度
Fig.6  白洋淀测区飞行计划示意
Fig.7  白洋淀测区高空内校信号电磁响应统计
Fig.8  白洋淀测区架次峰值电流统计
[1] Siemon B, Christiansen A V, Auken E. A review of helicopter-borne electromagnetic methods for groundwater exploration[J]. Near Surface Geophysics, 2009,7(5-6):629-646.
doi: 10.3997/1873-0604.2009043
[2] 牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.
[2] Niu Z L. Principle of time domain electromagnetic method[M]. Changsha: Central South University Press, 2007.
[3] 王卫平, 陈斌. 直升机TEM系统发展研究现状及应用前景[J]. 地质找矿论丛, 2010,25(4):286-291.
[3] Wang W P, Chen B. Current research situation and applied potential of the helicopter TEM systems[J]. Contributions to Geology and Mineral Resources Research, 2010,25(4):286-291.
[4] 鄂国庆, 徐英哲, 李文杰. 固定翼时间域航空电磁系统的飞机选型问题[J]. 物探与化探, 2012,36(4):595-597.
[4] E G Q, Xu Y Z, Li W J Aircraft platform determination in the Development of the fixed-wing airborne time-domain electromagnetic system[J]. Geophysical and Geochemical Exploration, 2012,36(4):595-597.
[5] 崔志强, 胥值礼, 孟庆敏. 国内主要航空物探飞行平台特点及发展[J]. 物探与化探, 2014,38(6):1107-1113.
doi: 10.11720/wtyht.2014.6.02
[5] Cui Z Q, Xu Z L, Meng Q M. The features of the main airborne geophysical flying-platforms in China and the development trend[J]. Geophysical and Geochemical Exploration, 2014,38(6):1107-1113.
[6] 王金龙, 谢汝宽, 梁韧, 等. 高海拔山区航空地球物理飞机选型与飞行性能分析[J]. 物探与化探, 2017,41(3):556-559.
[6] Wang J L, Xie R K, Liang R, et al. Aircraft type selection for airborne geophysical exploration in super-high plateau and flight performance analysis[J]. Geophysical and Geochemical Exploration, 2017,41(3):556-559.
[7] 李健, 郭亮, 金九强, 等. 航空物探测量中直升机起降点设置及应用[J]. 中国地质调查, 2017,4(5):82-85.
[7] Li J, Guo L, Jin J Q, et al. Setup and application of the helicopter taking off and landing point in airborne geophysical survey[J]. Geological Survey of China, 2017,4(5):82-85.
[8] 王卫平. 直升机TEM系统关键技术指标与探测深度分析[J]. 地球学报, 2005,26(1):93-97.
[8] Wang W P. An analysis of pivotal technique specification of the helicopter TEM system and its detection depth[J]. Acta Geoscientical Sinca, 2005,26(1):93-97.
[9] 罗延钟, 张胜业, 王卫平. 时间域航空电磁法一维正演研究[J]. 地球物理学报, 2003,46(5):719-724.
[9] Luo Y Z, Zhang S Y, Wang W P. A research on one-dimension forward for aerial electromagnetic method in time domain[J]. Chinese Journal of Geophysics, 2003,46(5):719-724.
[10] 闵刚, 王绪本, 毛立峰, 等. 磁偶极子源航空瞬变电磁对飞行高度的响应特征[J]. 物探与化探, 2012,36(4):591-594.
[10] Min G, Wang X B, Mao L F, et al. Characteristics of electromagnetic response to magnetic dipole source at different flying heights[J]. Geophysical and Geochemical Exploration, 2012,36(4):591-594.
[11] 杨淼鑫, 梁盛军. 富锦—友谊地区航空电磁测量影响因素分析[J]. 科学技术与工程, 2019,19(3):48-54.
[11] Yang M X, Liang S J. Analysis of influence factors on airborne electromagnetic survey in Fujin-Youyi area[J]. Science Technology and Engineering, 2019,19(3):48-54.
[12] Macnae J C, Lamontagne Y, West G F. Noise processing techniques for time-domain EM systems[J]. Geophysics, 1984,49(7):934-948.
doi: 10.1190/1.1441739
[13] Buselli G, Hwang H S, Pik J P. AEM noise reduction with remote referencing[J]. Exploration Geophysics, 1998,29(2):71-76.
doi: 10.1071/EG998071
[14] 朱凯光, 王凌群, 谢宾, 等. 基于主成分分析的航空电磁数据噪声去除方法[J]. 中国有色金属学报, 2013,23(9):2430-2435.
[14] Zhu K G, Wang L Q, Xie B, et al. Noise removal for airborne electromagnetic data based on principal component analysis[J]. The Chinese Journal of Nonferrous Metals, 2013,23(9):2430-2435.
[15] 黄威, 奔放, 吴珊, 等. 正交多项式法在航空电磁运动噪声去除中的应用[J]. 物探与化探, 2019,43(4):892-898.
[15] Huang W, Ben F, Wu S, et al. The application of orthogonal polynomial fitting method to airborne electromagnetic motion noise removal[J]. Geophysical and Geochemical Exploration, 2019,43(4):892-898.
[16] 王凌群. 基于统计特性分析的航空电磁数据噪声压制技术研究[D]. 长春:吉林大学, 2016.
[16] Wang L Q. Research on noise suppression for airborne electromagnetic data based on statistical characteristics analysis[D]. Changchun:Jilin University, 2016.
[17] 张昌达. 航空时间域电磁法测量系统:回顾与前瞻[J]. 工程地球物理学报, 2006,3(4):265-273.
[17] Zhang C D. Airborne time domain electromagnetics system:Look back and ahead[J]. Chinese Journal of Engineering Geophysics, 2006,3(4):265-273.
[18] Sorensen K I, Auken E A. Sky TEM—a new high-rsolution helicopter transient electromagnetic system[J]. Exporation Geophysics, 2004,35(3):194-202.
[19] Doll W, Gamey T, Beard L, et al. Recent advances in airborne survey technology yield performance approaching ground-based surveys[J]. The Leading Edge, 2003,22(5):420-425.
doi: 10.1190/1.1579574
[20] 李健, 郭亮, 肖刚毅, 等. AS350B3型直升机在中高山航空物探测量中的优势[J]. 物探与化探, 2018,42(1):192-198.
[20] Li J, Guo L, Xiao G Y, et al. The advantages of AS350B3 helicopter in aerogeophysical survey in the high mountain area[J]. Geophysical and Geochemical Exploration, 2018,42(1):192-198.
[21] AS350B3操作手册EUROCOPTER 350B3 13.101.01E.
[21] AS350B3 Operation Manual EUROCOPTER 350B3 13.101.01E.
[22] 中国航空工业昌河飞机工业(集团)有限公司.产品中心:民机系列AC311A[EB/OL]. 中国航空工业昌河飞机工业(集团)有限公司网站, [2020-07-02]. http://www.changhe.com/%E4%BA%A7%E5%93%81%E4%B8%AD%E5% BF%83.html.
[22] AVIC Changhe Aircraft Industry (Group) Corporation LTD.Product center:Civil aircraft series AC311A[EB/OL]. AVIC Changhe Aircraft Industry (Group) Co.,Ltd. Website, [2020-07-02]. http://www.changhe.com/index.html.
[23] 航空工业哈尔滨飞机工业集团有限责任公司.产品展厅:直升机AC312E[EB/OL]. 航空工业哈尔滨飞机工业集团有限责任公司网站, [2020-07-02]. http://www.hafei.com/ywly/cpzt/zsj/index.shtml.
[23] AVIC Harbin Aircraft Industry Group Co.,Ltd. Product show: Helicopter AC312E[EB/OL]. AVIC Harbin Aircraft Industry Group Co.,Ltd. Website, [2020-07-02]. http://www.hafei.com/ywly/cpzt/zsj/index.shtml.
[24] 中国民用航空总局.一般运行和飞行规则(CCAR-91-R2)[EB/OL]. 中国民用航空总局网站, 2007 [2020-07-02]. http://www.caac.gov.cn /XXGK/XXGK/MHGZ/201511/t20151102_8444.html.
[24] Civil Aviation Administration of China.General operation and flight rules (CCAR-91-R2)[EB/OL]. CAAC Website, 2007 [2020-07-02]. http://www.caac.gov.cn /XXGK/XXGK/MHGZ/201511/t20151102_8444.html.
[25] 李楠. 时间域航空电磁数据预处理技术研究[D]. 长春:吉林大学, 2010.
[25] Li N. Research on airborne time-domain electromagnetic data processing[D]. Changchun:Jilin University, 2010.
[1] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[2] 单希鹏, 谢汝宽, 余学中, 梁盛军, 李健. 频率域航空电磁法在雄安新区浅层(微)咸淡水调查中的应用[J]. 物探与化探, 2023, 47(2): 504-511.
[3] 苏永军, 曹占宁, 赵更新, 胡祥云, 范剑, 张竞, 范翠松, 黄忠峰. 高密度电阻率法在雄安新区浅表古河道精细化探测中的应用研究[J]. 物探与化探, 2023, 47(1): 272-278.
[4] 龙慧, 谢兴隆, 李凤哲, 任政委, 王春辉, 郭淑君. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征[J]. 物探与化探, 2022, 46(4): 808-815.
[5] 于长春, 乔日新, 张迪硕. 雄安新区航磁推断的三维基底构造特征[J]. 物探与化探, 2017, 41(3): 385-391.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com