Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (3): 637-644    DOI: 10.11720/wtyht.2022.1381
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
矿物自动分析系统在碳酸岩型稀土地球化学勘查中的应用
刘东盛1,2,3(), 陈圆圆4
1.中国地质科学院 地球物理地球化学勘查研究所 自然资源部地球化学探测重点实验室, 河北 廊坊 065000
2.联合国教科文组织全球尺度地球化学国际研究中心, 河北 廊坊 065000
3.中国地质大学(北京) 地球科学与资源学院, 北京 100083
4.河北省区域地质调查院,河北 廊坊 065000
Application of automated mineral analysis systems in geochemical exploration of carbonatite-related REE deposits
LIU Dong-Sheng1,2,3(), CHEN Yuan-Yuan4
1. Key Laboratory of Geochemical Exploration, Ministry of Natural Resources, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
2. International Centre on Global-Scale Geochemistry, United Nations Educational Scientific and Cultural Organization, Langfang 065000, China
3. School of Earth Sciences and Resources,China University of Geosciences (Beijing), Beijing 100083, China
4. Hebei Institute of Regional Geological Survey, Langfang 065000,China
全文: PDF(3773 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为稳固中国稀土资源大国地位,近年来我国不断加强稀土资源勘查力度。地球化学勘探是矿产勘查重要手段,本文通过总结以往稀土化探工作,查明其中存在的问题并提出解决方案。总结前人工作发现,碳酸岩型稀土矿致异常具有衬度低、规模小的特点,其原因主要是:①相对地壳丰度,稀土矿工业品位富集程度较低,容易被花岗岩等引起的非矿致异常稀释;②稀土成矿指示性矿物粒度小、分选难,对其表生迁移富集规律认识不深,难以制定有针对性的采样方法。基于扫描电镜和能谱的自动矿物分析系统,可实现微米级稀土矿物的化学成分和形貌参数的定量统计,为稀土矿物表生迁移规律研究提供基础。近年来在化探领域,前人利用矿物自动分析系统开展矿体—水系沉积物系统中微细粒矿物含量变化规律研究,显示出该方法的良好应用前景。未来可利用矿物自动分析系统开展:①风化过程中稀土矿物粒度变化规律研究;②矿体—水系沉积物系统中稀土矿物迁移富集规律研究。通过厘清矿体—土壤—水系沉积物系统中稀土成矿指示性矿物的分布特征和迁移富集规律,为稀土化探工作提供理论支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘东盛
陈圆圆
关键词 矿物自动分析系统QEMSCAN碳酸岩型稀土矿地球化学勘查    
Abstract

In recent years, China has been strengthening the exploration of rare earth resources in order to secure the status of China as a large rare earth resource country. Geochemical exploration is an important means of mineral exploration, This paper summarizes the geochemical exploration of rare earth, finds out the existing problems and puts forward solutions. The carbonatite related rare earth anomalies are characterized by low contrast and small scale, the reasons are: ① the industrial grade of rare earth ore is enriched to a low degree relative to the abundance of the earth's crust, which is easily diluted by non-mineral anomalies caused by granite, etc.; ②the size of rare earth ore-forming indicator minerals are small and difficult to sort by traditional method, thus the epigenetic migration and enrichment pattern is not well understood, and it is difficult to develop a targeted sampling method. The automatic mineral analysis system based on scanning electron microscopy and energy spectrum can realize the quantitative statistics of chemical composition and morphological parameters of rare earth minerals at the micron level, which provides the basis for the study of epigenetic migration pattern of rare earth minerals. In recent years, in the field of geochemical exploration, previous research on the variation pattern of micro scale grain mineral content in the ore body-stream sediment system using the automatic mineral analysis system has shown the good application prospect of this method. In the future, the automatic mineral analysis system can be used to carry out:①research on the change of rare earth mineral size during weathering process; ②research on the migration and enrichment of rare earth minerals in the ore body-aqueous sediment system. Thus, the distribution characteristics and migration and enrichment rules of rare earth indicative minerals in ore-body, soil-stream sediment system are clarified, providing theoretical support for geochemical exploration of rare earth.

Key wordsautomated mineral analysis system    QEMSCAN    carbonatite-related REE deposits    geochemical exploration
收稿日期: 2021-07-09      修回日期: 2021-08-26      出版日期: 2022-06-20
ZTFLH:  P632+.3  
基金资助:行业基金项目“深部地壳探测”(SinoProbe-04);行业基金项目“深部地壳探测”(201011053);中国地质调查局地质调查项目“化学地球基准与调查评价”(DD20190450)
作者简介: 刘东盛(1985-),男,从事关键资源地球化学填图研究工作。Email: dopsonliu@sina.com
引用本文:   
刘东盛, 陈圆圆. 矿物自动分析系统在碳酸岩型稀土地球化学勘查中的应用[J]. 物探与化探, 2022, 46(3): 637-644.
LIU Dong-Sheng, CHEN Yuan-Yuan. Application of automated mineral analysis systems in geochemical exploration of carbonatite-related REE deposits. Geophysical and Geochemical Exploration, 2022, 46(3): 637-644.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1381      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I3/637
Fig.1  中国南方镧地球化学模式与碳酸岩型稀土矿分布[24]
Fig.2  中国南方金地球化学模式与大型金矿床分布[24]
Fig.3  部分常见富稀土矿物镜下照片[35]
a—钠铁闪石;b—针状霓石;c—萤石;d—绿石;e—独居石;f—氟碳铈矿(白色);g—硅钛铈矿;h褐帘石(暗色部分)
Fig.4  QEMSCAN方法分析流程[45]
Fig.5  QEMSCAN用于表生稀土矿物迁移规律研究实例[34]
Fig.6  QEMSCAN定量评价稀土矿物磨圆度(a)和矿物伴生关系(b)的实例[52]
[1] U.S. Department of Defense. Strategic and critical materials 2013 report on stockpile requirements[R]. Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, 2013:189.
[2] 王瑞江, 王登红, 李建康. 稀有稀土稀散矿产资源及其利用开发[M]. 北京: 地质出版社, 2015.
[2] Wang R J, Wang D H, Li J K. Utilization and development of rare, rare earth and scattered elements[M]. Beijing: Geological Publishing House, 2015.
[3] 陈甲斌, 霍文敏, 李秀芬, 等. 中国与美国和欧盟稀土资源形势对比分析[J]. 中国国土资源经济, 2020, 33(8):8-12.
[3] Chen J B, Huo W M, Li X F, et al. Comparative analysis of rare earth resources situation between China, the U. S. and EU[J]. Natural Resource Economics of China, 2020, 33(8): 8-12.
[4] 张洪涛, 牟旭赞, 孙文珂, 等. 中国找矿发现史:物化探卷[M]. 北京: 地质出版社, 2002:591-594.
[4] Zhang H T, Mou X Z, Sun W K, et al. History of prospecting and discovery in China:Geophysical and geochemical exploration volume[M]. Beijing: Geological Publishing House, 2002: 591-594.
[5] 刘东盛, 周建, 严桃桃, 等. 腾冲地块稀土地球化学背景与泥岩中稀土超长富集特征[J]. 地球学报, 2020, 41(6):756-769.
[5] Liu D S, Zhou J, Yan T T, et al. Geochemical background of REEs: Super-enrichment in argillaceous rocks in Tengchong block[J]. Acta Geoscientia Sinica, 2020, 41(6): 756-769.
[6] 范宏瑞, 牛贺才, 李晓春, 等. 中国内生稀土矿床类型,成矿规律与资源展望[J]. 科学通报, 2020, 65(33):134-149.
[6] Fan H R, Niu H C, Li X C, et al. The types, ore genesis and resource perspective of endogenic REE deposits in China[J]. Chinese Science Bulletin, 2020, 65(33): 134-149.
[7] 王学求, 周建, 迟清华, 等. 中国稀土元素地球化学背景与远景区优选[J]. 地球学报, 2020, 41(6):747-758.
[7] Wang X Q, Zhou J, Chi Q H, et al. Geochemical background and distribution of rare earth elements in China: Implications for potential prospects[J]. Acta Geoscientia Sinica, 2020, 41(6): 747-758.
[8] 林传仙, 刘义茂, 王中刚, 等. 中国矿床[M]. 北京: 地质出版社, 1996.
[8] Lin C X, Liu Y M, Wang Z G, et al. China's deposit[M]. Beijing: Geological Publishing House, 1996.
[9] 邹天人, 李庆昌. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006:187-188.
[9] Zou T R, Li Q C. Rare and rare earth metallic deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 2006: 187-188.
[10] Verplank P, Mariano A, Mariano A. Rare earth element ore geology of carbonatites[J]. Society of Economic Geologists, Inc., 2016, 18:5-18.
[11] 谢玉玲, 夏加明, 崔凯, 等. 中国碳酸岩型稀土矿床:时空分布与成矿过程[J]. 科学通报, 2020, 65(33):150-164.
[11] Xie Y L, Xia J M, Cui K, et al. Rare earth elements deposits in China: Apatio-temporal distribution and ore-forming processes[J]. Chinese Science Bulletin, 2020, 65(33): 150-164.
[12] 宋文磊, 许成, 王林均, 等. 与碳酸岩—碱性杂岩体相关的内生稀土矿床成矿作用研究进展[J]. 北京大学学报:自然科学版, 2013, 49(4):725-740.
[12] Song W L, Xu C, Wang L J, et al. Review of the metallogenesis of the endogenetic rare earth elements deposits related to carbonatite-alkaline complex[J]. Journal of Peking University: Natural Science Edition, 2013, 49(4): 725-740.
[13] 施泽民, 叶幼兰. 四川牦牛坪稀土矿区的氟碳铈矿[J]. 矿物岩石, 1993, 13(3):42-47.
[13] Shi Z M, Ye Y L. Bastnaesitefrom rare earth mining in Maoniuping, Sichuan province[J]. Petrology, 1993, 13(3): 42-47.
[14] Zajac I S. John Jambor’s contributions to the mineralogy of the Strange Lake peralkaline complex, Quebec-Labrador, Canada[J]. The Canadian Mineralogist, 2015, 53: 885-894.
doi: 10.3749/canmin.1400051
[15] Orris G J, Grauch R I. Rare earth element mines, deposits, and occurrences[R]. Open-File Rep 02-189. Reston: US Geological Survey, 2002:28-57.
[16] Kanazawa Y, Kamitani M. Rare earth minerals and resources in the world[J]. Journal of Alloys and Compounds, 2006, 408-412: 1339-1343.
doi: 10.1016/j.jallcom.2005.04.033
[17] Hawkes H E, Webb J S. Geochemistry in mineral exploration[M]. New York: Harper & Row Publishers, 1962.
[18] Salminen R, Batista M J, Bidovec M, et al. FOREGS geochemical atlas of Europe, Part 1: Background information, methodology and maps[M]. Espoo: Geological Survey of Finland, 2005.
[19] 谢学锦, 任天祥, 孙焕振. 中国地球化学图集[M]. 北京: 地质出版社, 2012.
[19] Xie X J, Ren T X, Sun H Z. Geochemical atlas of China[M]. Beijing: Geological Publishing House, 2012.
[20] Wang X Q, the CGB Sampling Team. China geochemical baselines: Sampling methodology[J]. Journal of Geochemical Exploration, 2015, 148: 25-39.
doi: 10.1016/j.gexplo.2014.05.018
[21] 谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009: 30(6):12-28.
[21] Xie X J, Ren T X, Xi X H, et al. The implementation of the regional geochemistry-national reconnaissance program (RGNR) in China in the past thirty years[J]. Acta Geoscientia Sinica, 2009, 30(6):12-28.
[22] 陆正敏, 程正海. 中国矿床发现史:内蒙古卷[M]. 北京: 地质出版社, 1996.
[22] Lu Z M, Cheng Z H. History of discovery of ore deposits in China:Inner Mongolia volume[M]. Beijing: Geological Publishing House, 1996.
[23] 刘英俊, 曹励明, 李兆麟. 元素地球化学[M]. 北京: 科学出版社, 1984.
[23] Liu Y J, Cao L M, Li Z L. Elements geochemistry[M]. Beijing: Science Press, 1984.
[24] 程志中, 谢学锦, 冯济舟, 等. 中国南方地区地球化学图集[M]. 北京: 地质出版社, 2014:3-61.
[24] Cheng Z Z, Xie X J, Feng J Z, et al. Geochemical atlas of southern China[M]. Beijing: Geological Publishing House, 2014: 3-61.
[25] 孙传饶. 矿产资源综合利用手册[M]. 北京: 科技出版社, 2000.
[25] Sun C R. Handbook of comprehensive utilization of mineral Rresources[M]. Beijing: Science and Technology Press, 2000.
[26] Taylor S R, Mclennan S M. The chemical composition evolution of the continental crust[J]. Review Geophysics, 1995, 33: 241-265.
doi: 10.1029/95RG00262
[27] Simandl G J, Paradis S. Carbonatites: Related ore deposits, resources, footprint, and exploration methods[J]. Applied Earth Science, 2018, 127: 1-30.
doi: 10.1080/03717453.2018.1435035
[28] 李桂明. 牦牛坪稀土资源综合利用探讨[J]. 稀土, 2019, 40(1):147-152.
[28] Li G M. Discussion on comprehensive utilization of rare earth resources in Maoniuping[J]. Chinese Rare Earths, 2019, 40 (1): 147-52.
[29] 冯婕, 吕大伟. 微山稀土矿原生矿选矿试验研究[J]. 稀土, 1999, 20(3):7-10.
[29] Feng J, Lyu D W. Benification experiment on primary mineral s of Weishan rare earth mine[J]. Chinese Rare Earths, 1999, 20(3): 7-10.
[30] 徐世权, 曾海鹏, 张宏. 竹山庙垭稀土矿的选冶联合工艺技术[J]. 中国矿山工程, 2017, 46(5):15-20.
[30] Xu S Q, Zeng H P, Zhang H. Beneficiation-metallurgy combination technology of Zhushan Miaoya rare earth mine[J]. China Mine Engineering 2017, 46(5): 15-20.
[31] 马莹, 李娜, 王其伟, 等. 白云鄂博矿稀土资源的特点及研究开发现状[J]. 中国稀土学报, 2016, 34(6):641-649.
[31] Ma Y, Li N, Wang Q W, et al. Characteristics and current research situation of rare earth resources in Bayan Obo ore[J]. Journal of The Chinese Society of Rare Earths, 2016, 34(6): 641-649.
[32] Lehtonen M, Laukkanen J, Sarala P. Exploring for RE and REE mineralization using indicator minerals[C]// Rovaniemi:25th International Applied Geochemistry Symposium, 2011:13-18.
[33] Lehtonen M, Yann L, Hugh O, et al. Novel technologies for indicator mineral-based exploration[R]. Geological Survey of Finland, 2015:23-62.
[34] Mackay D A R, Simandl G J, Ma W, et al. Indicator mineral-based exploration for carbonatites and related specialty metal deposits:A QEMSCAN orientation survey, British Columbia, Canada[J]. Journal of Geochemical Exploration, 2016, 165: 159-173.
doi: 10.1016/j.gexplo.2016.03.005
[35] Mcclenaghan B R, Paulen C, Kjarsgaard I M. Rare metal indicator minerals in bedrock and till at the Strange Lake peralkaline complex, Quebec and Labrador, Canada[J]. Can. J. Earth Sci., 2019, 56: 857-869.
doi: 10.1139/cjes-2018-0299
[36] 谢学锦, 侯智慧. 金矿化探(一):金矿化探的现状与研究方向[J]. 长春地质学院学报, 1987, 7(4):361-372.
[36] Xie X J, Hou Z H. Geochemical exploration of gold deposits (1): Present situation and research direction of geochemical exploration of gold deposits[J]. Journal of Changchun University of Earth Sciences, 1987, 7(4): 361-372.
[37] 谢学锦. 金矿化探(二)——采样与取子样的难关·为《国外地质勘探技术》创刊第100期而作[J]. 国外地质勘探技术, 1988(Z1):150-158.
[37] Xie X J. Geochemical exploration of gold deposits (2): Difficulties in sampling and sampling · for the 100th issue of Foreign Geoexploration Technology[J]. Foreign Geoexploration Technology, 1988(Z1): 150-158.
[38] 谢学锦, 王学求. 金矿化探(三)——金的颗粒分布与取子样误差关系的研究[J]. 物探与化探, 1992, 16(6):23-34.
[38] Xie X J, Wang X Q. Geochemical exploration of gold deposit (3): Study on the relationship between gold particle distribution and sampling error[J]. Geophysical and Geochemical Exploration, 1992, 16(6): 23-34.
[39] 王学求, 谢学锦. 非传统金矿化探的理论与方法技术研究[J]. 地质学报, 1996, 70(1):86-97.
[39] Wang X Q, Xie X J. Unconventional geochemical exploration for gold[J]. Acta Geologica Sinica, 1996, 70(1): 86-97.
[40] Chakhmouradian A R, Wall F. Rare earth elements: Minerals, mines, magnets (and more)[J]. Elements, 2012, 8(5): 333-340.
doi: 10.2113/gselements.8.5.333
[41] Sanematsu K, Kon Y, Imai A, et al. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand[J]. Mineralium Deposita, 2013, 48(4): 437-451.
doi: 10.1007/s00126-011-0380-5
[42] Berger A, Janots E, Gnos E, et al. Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar[J]. Applied Geochemistry, 2014, 41: 218-228.
doi: 10.1016/j.apgeochem.2013.12.013
[43] 陆蕾, 王登红, 王成辉, 等. 云南临沧花岗岩中离子吸附型稀土矿床的成矿规律[J]. 地质学报, 2019, 93(6):1466-1478.
[43] Lu L, Wang D H, Wang C H, et al. Mineralization regularity of ion-adsorption type REE deposits on Lincang granite in Yunnan Province[J]. Acta Geologica Sinica, 2019, 93(6): 1466-1478.
[44] Layton-Matthews C H, McClengahan M B. Mineral chemistry: Modern techniques and applications to exploration[C]// Application of Indicator Mineral Methods to Mineral Exploration, 2014:9-18.
[45] Zaitsev A N, Wall F, Lebas M J. REE-Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: Their mineralogy, paragenesis and evolution[J]. Miner. Mag., 1998, 62: 225-250.
doi: 10.1180/002646198547594
[46] Butcher A R, Helms T A, Gottlieb P, et al. Advances in the quantification of gold deportament by QemSCAN[C]// Proceedings of 7th Mill Operators Conference, 2000:267-271.
[47] Burrows D, Gu Y. JRMRC mineral liberation analyser — A modern tool for ore characterisation and plant optimisation[J]. Metallurgical Plant Design and Operating Strategies, 2006, 9:125-139.
[48] 尤源, 牛小兵, 冯胜斌, 等. 鄂尔多斯盆地延长组长7致密油储层微观孔隙特征研究[J]. 中国石油大学学报:自然科学版, 2014, 38(6):18-23.
[48] You Y, Niu X B, Feng S B, et al. Study of pore features in Chang7 tight oil reservoir,Yanchang layer,Ordos Basin[J]. Journal of China University of Petroleum, 2014, 38(6): 18-23.
[49] Santoro L, Rollinson G K, Boni M, et al. Automated scanning electron microscopy (QEMSCAN)-based mineral identification and quantification of the Jabali Zn-Pb-Ag nonsulfide deposit (Yemen)[J]. Economic Geology, 2015, 110(4): 1083-1099.
doi: 10.2113/econgeo.110.4.1083
[50] Vermeesch P, Rittner M, Petrou E, et al. High throughput petrochronology and sedimentary provenance analysis by automated phase mapping and LA-ICP-MS[J]. Geochem. Geophys. Geosystems, 2017, 18: 4096-4109.
doi: 10.1002/2017GC007109
[51] Sven S, Franz M. Automated quantitative rare earth elements mineralogy by scanning electron microscopy[J]. Physical Sciences Reviews, 2016, 1(9):63.
[52] Grammatikopoulosa T, Howardb S, Alexanderc C, et al. Investigation of low-grade REE offshore sands from North and South Carolina, and Georgia, USA, using automated mineralogy[J]. Journal of Geochemical Exploration, 2020, 202: 1-14.
doi: 10.1016/j.gexplo.2019.03.004
[53] Garzanti E, Andò S, Vezzoli G. Grain-size dependence of sediment composition and environmental bias in provenance studies[J]. Earth Planet. Sci. Lett., 2009, 277: 422-432.
doi: 10.1016/j.epsl.2008.11.007
[54] Stendal H, Theobald P K. Heavy-mineral concentrates in geochemical exploration[J]. Handbook of Exploration Geochemistry, 1994, 6:185-225.
[55] Fletcher W K, Loh C. Transport of cassiterite in a Malaysian stream: Implications geochemical exploration[J]. Journal of Geochemical Exploration, 1996, 57: 9-20.
doi: 10.1016/S0375-6742(96)00012-X
[1] 孙跃, 杨少平, 张振宇, 袁桂琴, 王之峰. 《地球化学勘查技术符号》修订内容初步探讨[J]. 物探与化探, 2022, 46(6): 1425-1430.
[2] 蔺强强, 郑琪, 苏永红. 黄土覆盖区地气测量有效性评价——以甘肃省通渭县陈贾村地区为例[J]. 物探与化探, 2020, 44(3): 533-539.
[3] 唐世新, 李建军, 马生明, 胡树起. 运积物覆盖区地球化学找矿方法——土壤热磁组分测量[J]. 物探与化探, 2019, 43(4): 749-757.
[4] 杨志斌, 周亚龙, 孙忠军, 张富贵, 张舜尧, 李广之. 羌塘盆地泥火山发育区天然气水合物地球化学勘查[J]. 物探与化探, 2017, 41(3): 452-458.
[5] 袁桂琴, 杨少平, 米宏泽, 孙跃. 物探化探技术标准体系研究有关问题的探讨[J]. 物探与化探, 2015, 39(6): 1267-1270.
[6] 姚铁, 周勇, 杜展军, 赵振明. 地、物、化综合方法在博故图金矿勘查中的应用[J]. 物探与化探, 2015, 39(5): 877-884.
[7] 陈国光, 马振东, 奚小环, 李敏, 张华, 湛龙, 张德存, 叶家瑜. 矿产地球化学勘查体系的探讨[J]. 物探与化探, 2015, 39(3): 437-442.
[8] 胡树起, 刘崇民, 马生明. 铅硫同位素在地球化学勘查中的应用[J]. 物探与化探, 2015, 39(2): 366-370.
[9] 郭志娟, 孔牧, 张华, 杨帆, 徐仁廷, 王成文, 王乔林, 宋云涛, 韩伟. 适合地球化学勘查的景观划分研究[J]. 物探与化探, 2015, 39(1): 12-15.
[10] 郎兴海, 唐菊兴, 李志军, 董树义, 丁枫, 谢富伟, 王子正, 张丽, 黄勇. 化探在西藏雄村矿区Ⅱ、Ⅲ号矿体发现中的作用[J]. 物探与化探, 2014, 38(4): 667-672.
[11] 赵丕忠, 程正发, 周二斌, 涂金飞, 盛夏. 大兴安岭成矿带北段化探方法组合与找矿突破[J]. 物探与化探, 2014, (3): 471-477.
[12] 周余国, 高启芝, 王玉朝, 周坤. 痕量金野外快速测试方法的系统改进[J]. 物探与化探, 2014, (3): 539-543.
[13] 杨帆, 刘华忠, 宋云涛, 王成文, 喻劲松, 徐仁廷, 韩伟, 王乔林, 郭志娟, 孔牧, 张华. 小西弓金矿区地球化学勘查方法对比[J]. 物探与化探, 2014, 38(2): 205-210.
[14] 周军, 任燕. 新疆西昆仑岔路口—甜水海地区铅锌资源地球化学定量预测[J]. 物探与化探, 2014, 38(2): 220-226.
[15] 吴二, 陈远荣, 刘巍, 卢月玲, 蒋慧俏, 张冠清, 蓝妮拉, 高儇博. 烃气测量法在辽宁白云金矿找矿潜力评价中的应用[J]. 物探与化探, 2014, 38(2): 248-254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com