Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (6): 1477-1484    DOI: 10.11720/wtyht.2022.1585
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
带有横向约束的全局优化波阻抗反演方法及应用
朱剑兵1(), 高照奇2, 田亚军2, 梁兴城2
1.中国石油化工股份有限公司 胜利油田分公司物探研究院,山东 东营 257022
2.西安交通大学 信息与通信工程学院,陕西 西安 710049
Globally optimized seismic impedance inversion with lateral constraints and its application
ZHU Jian-Bing1(), GAO Zhao-Qi2, TIAN Ya-Jun2, LIANG Xing-Cheng2
1. Geophysical Research Institute,Shengli Oilfield Branch Company of Sinopec,Dongying 257022,China
2. School of Information and Communications Engineering,Xi'an Jiaotong University,Xi'an 710049,China
全文: PDF(4259 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地震波阻抗反演是一种基于地震数据得到波阻抗参数的非线性优化问题。不依赖于目标函数梯度信息的全局优化算法是求解地震波阻抗反演问题的有效方法。然而这类方法采用逐道反演的策略,忽略了相邻地震道的空间相关性,导致反演结果的横向连续性差。针对该问题,提出了一种融入旁道最优解的模型空间初始化方法约束波阻抗反演的搜索空间范围,以改善反演结果的横向连续性,进而提出了一种带有横向约束的多组变异差分进化地震波阻抗反演方法。合成地震记录算例表明,该方法相比于传统方法不仅具有更快的收敛速度,而且反演结果具有更好的横向连续性。此外,该方法被应用于胜利油田某区块的储层波阻抗参数反演,反演结果与测井资料有很好的一致性,且有效地刻画了储层砂岩厚度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱剑兵
高照奇
田亚军
梁兴城
关键词 地震波阻抗反演全局优化横向连续性油储地球物理地震资料处理    
Abstract

The seismic impedance inversion is nonlinear optimization based on seismic data to obtain wave impedance parameters.The global optimization algorithm independent of the gradient information of objective function is an effective method for seismic impedance inversion.However,this method adopts a trace-by-trace inversion strategy and ignores the spatial correlation of adjacent seismic traces,resulting in poor lateral continuity of the inversion results.Given this,this study proposed a model space initialization method integrating the optimal solution of the bypass to restrict the search space of wave impedance inversion,in order to improve the lateral continuity of inversion results.Based on this,this study proposed a seismic impedance inversion method with lateral constraints based on multi-group variation differential evolution.A case of synthetic seismogram shows that this method has a higher convergence rate and better lateral continuity of inversion results than conventional methods.This method was applied to the inversion of reservoir impedance parameters of a block of the Shengli Oilfield.The obtained inversion results were in good agreement with the logging data and effectively characterize the thickness of reservoir sandstone.

Key wordsseismic impedance inversion    global optimization    lateral continuity    oil reservoir geophysics    seismic data processing
收稿日期: 2021-11-01      修回日期: 2022-07-22      出版日期: 2022-12-20
ZTFLH:  P631.4  
基金资助:中石化科技攻关项目“地震多维数据构建及油气智能检测技术研究”(PE19003-3)
作者简介: 朱剑兵(1977-),男,毕业于中国石油大学(华东),主要研究方向为地震资料综合解释。Email:zhujianb95@163.com
引用本文:   
朱剑兵, 高照奇, 田亚军, 梁兴城. 带有横向约束的全局优化波阻抗反演方法及应用[J]. 物探与化探, 2022, 46(6): 1477-1484.
ZHU Jian-Bing, GAO Zhao-Qi, TIAN Ya-Jun, LIANG Xing-Cheng. Globally optimized seismic impedance inversion with lateral constraints and its application. Geophysical and Geochemical Exploration, 2022, 46(6): 1477-1484.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1585      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I6/1477
Fig.1  MMDE算法流程
Fig.2  对比不同的模型搜索空间设定方法
a—传统MMDE进行地震波阻抗反演时采用的模型搜索空间; b—本文所提出的带有横向约束的模型搜索空间
Fig.3  Marmousi II波阻抗模型
a—真实阻抗模型;b—反演使用的初始阻抗模型
Fig.4  对比所提出新方法与传统多组变异差分进化算法的收敛曲线
Fig.5  对比不同方法反演的阻抗模型
a—所提出新方法反演的阻抗模型;b—多组变异差分进化算法反演的阻抗模型;c、d—分别是a和b在CDP100~300处的阻抗模型放大对比
参数 多组变异差分进化算法 所提出新方法
信噪比SNR/dB 33.2153 36.0658
结构相似性指数SSIM 0.8682 0.9332
Table 1  定量化对比不同反演方法得到阻抗模型的质量
Fig.6  连井剖面对比
a—地震剖面;b—波阻抗剖面;井点位置处黑色曲线为利用测井数据计算的波阻抗
Fig.7  实际资料算例
a—胜利油田某工区三维叠后地震资料;b—所提出理论方法反演的波阻抗数据体
Fig.8  对比反演波阻抗与测井解释结果
a—反演波阻抗模型沿T2_1层位的切片;b—井插值砂地比剖面
[1] 万晓明, 梁劲, 梁金强, 等. 叠后波阻抗无井反演技术在T研究区天然气水合物分布预测中的应用[J]. 物探与化探, 2016, 40(3):438-444.
[1] Wan X M, Liang J, Liang J Q, et al. The application of post-stack impedance inversion without well to the prediction of gas hydrate distribution in T study area[J]. Geophysical and Geochemical Exploration, 2016, 40(3):438-444.
[2] 孔省吾, 张云银, 沈正春, 等. 波形指示反演在灰质发育区薄互层浊积岩预测中的应用——以牛庄洼陷沙三中亚段为例[J]. 物探与化探, 2020, 44(3):665-671.
[2] Kong X W, Zhang Y Y, Shen Z C, et al. The application of waveform inversion prediction of thin turbidite reservoir to calcareous depositional area: A case study of $E_{3}s^{2}_{3}$ in Niuzhuang sag[J]. Geophysical and Geochemical Exploration, 2020, 44(3): 665-671.
[3] 汪玲玲, 高静怀, 赵谦, 等. 基于矩阵Toeplitz稀疏分解的相对波阻抗反演方法[J]. 地球物理学报, 2017, 60(2):639-654.
[3] Wang L L, Gao J H, Zhao Q, et al. Relative acoustic impedance inversion via Toeplitz-Sparse Matrix Factorization[J]. Chinese Journal of Geophysics, 2017, 60(2):639-654.
[4] Frank M S, Balanis C A. A conjugate direction method for geophysical inversion problems[J]. IEEE Transactions on Geoscience and Remote Sensing, 1987,(6):691-701.
[5] Deift P, Zhou X. A steepest descent method for oscillatory Riemann-Hilbert problems[J]. Appeared in Bulletin of the American Mathematical Society, 1992, 26(1):119-124.
[6] Ma X Q. Simultaneous inversion of prestack seismic data for rock properties using simulated annealing[J]. Geophysics, 2002, 67(6):1877-1885.
doi: 10.1190/1.1527087
[7] Lagos S R, Sabbione J I, Velis D R. Very fast simulated annealing and particle swarm optimization for microseismic event location[C]// SEG Technical Program Expanded Abstracts 2014, 2014.
[8] Donelli M, Franceschini G, Martini A, et al. An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(2):298-312.
doi: 10.1109/TGRS.2005.861412
[9] Fernandez Martinez J L, Mukerji T, Garcia Gonzalo E, et al. Reservoir characterization and inversion uncertainty via a family of particle swarm optimizers[J]. Geophysics, 2012, 77(1):M1-M16.
doi: 10.1190/geo2011-0041.1
[10] Parolai S, Picozzi M, Richwalski S M, et al. Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm,considering higher modes[J]. Geophysical Research Letters, 2005, 32(1).
[11] Govindan R, Kumar R, Basu S, et al. Altimeter-derived ocean wave period using genetic algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 8(2):354-358.
doi: 10.1109/LGRS.2010.2075911
[12] Li T, Mallick S. Multicomponent,multi-azimuth pre-stack seismic waveform inversion for azimuthally anisotropic media using a parallel and computationally efficient non-dominated sorting genetic algorithm[J]. Geophysical Journal International, 2015, 200(2):1136-1154.
doi: 10.1093/gji/ggu445
[13] Semnani A, Kamyab M, Rekanos I T. Reconstruction of one-dimensional dielectric scatterers using differential evolution and particle swarm optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4):671-675.
doi: 10.1109/LGRS.2009.2023246
[14] Dehmollaian M. Through-wall shape reconstruction and wall parameters estimation using differential evolution[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 8(2):201-205.
doi: 10.1109/LGRS.2010.2056912
[15] Pan Z, Wu J, Gao Z, et al. Adaptive differential evolution by adjusting subcomponent crossover rate for high-dimensional waveform inversion[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6):1327-1331.
doi: 10.1109/LGRS.2015.2398876
[16] Li Z, Hao T, Xu Y, et al. A global optimizing approach for waveform inversion of receiver functions[J]. Computers & Geosciences, 2010, 36(7): 871-880.
doi: 10.1016/j.cageo.2009.11.007
[17] Potter M A, Jong K. A cooperative coevolutionary approach to function optimization[C]// Springer: Parallel Problem Solving from Nature,Heidelberg, 1994.
[18] Wang C, Gao J. High-dimensional waveform inversion with cooperative coevolutionary differential evolution algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 9(2):297-301.
doi: 10.1109/LGRS.2011.2166532
[19] Gao Z, Pan Z, Gao J. Multimutation differential evolution algorithm and its application to seismic inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6):3626-3636.
doi: 10.1109/TGRS.2016.2520978
[20] Gholami A. Nonlinear multichannel impedance inversion by total-variation regularization[J]. Geophysics, 2015, 80(5):R217-R224.
doi: 10.1190/geo2015-0004.1
[21] Zhang S, Fan X, Li G, et al. Multi-trace blocky reflectivity inversion with anisotropic total variation regularization[C]// SEG Technical Program Expanded Abstracts 2019, 2019.
[22] Cheng L, Wang S, Li S, et al. Multi-trace nonstationary sparse inversion with structural constraints[J]. Acta Geophysica, 2020, 68(3):675-685.
doi: 10.1007/s11600-020-00430-3
[1] 胡瑞卿, 王彦春, 岳占伟, 王奇. 小波域特征提取在浅层地震资料面波压制中的应用[J]. 物探与化探, 2018, 42(6): 1228-1236.
[2] 谢俊法, 孙成禹, 王兴谋, 李红梅, 林美言. 地震资料的多准则速度分析方法[J]. 物探与化探, 2017, 41(3): 513-520.
[3] 黄雪继, 刘来祥, 王永胜. 分频径向道中值滤波在地震资料处理中的应用[J]. 物探与化探, 2012, 36(2): 317-320.
[4] 周竹生, 谢金伟. 基于模拟退火法的弯曲射线追踪[J]. 物探与化探, 2011, 35(6): 793-797.
[5] 杨文军, 张福祥, 段云卿, 刘小明, 王雪芳. LT区低信噪比地震资料现场处理方法[J]. 物探与化探, 2008, 32(3): 331-334.
[6] 覃天, 王拥军, 高峰昌, 张联盟. 共反射面叠加在实际地震资料处理中的应用[J]. 物探与化探, 2006, 30(4): 330-333.
[7] 何新贞, 尚新民, 王常波, 石林光, 马利斌. 复杂地表及地下地质条件下地震资料处理中的若干重要环节[J]. 物探与化探, 2004, 28(5): 453-456.
[8] 贾丽华, 曾庆才, 段洪友, 吕金博, 庄道川, 张绍华. 塔中沙漠地区深层地震资料处理方法[J]. 物探与化探, 2002, 26(3): 232-235.
[9] 屈智华, 叶秋焱, 刘旺. 中国西部复杂地区地震资料处理[J]. 物探与化探, 2000, 24(1): 43-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com