Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1076-1086    DOI: 10.11720/wtyht.2022.0186
  东北黑土地地球化学调查专栏 本期目录 | 过刊浏览 | 高级检索 |
兴凯湖平原表层土壤有机碳空间变异的主控因素
杨泽1,2,3(), 张一鹤1,2,3, 戴慧敏1,2,3, 刘国栋1,2,3, 刘凯1,2,3, 许江1,2,3()
1.中国地质调查局 沈阳地质调查中心,辽宁 沈阳 110034
2.自然资源部 黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
3.辽宁省黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
Control factor of the spatial variations in the soil organic carbon content in the topsoil of the Xingkai Lake Plain
YANG Ze1,2,3(), ZHANG Yi-He1,2,3, DAI Hui-Min1,2,3, LIU Guo-Dong1,2,3, LIU Kai1,2,3, XU Jiang1,2,3()
1. Shenyang Center of China Geological Survey, Shenyang 110034,China
2. Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110034,China
3. Key Laboratory of Black Soil Evolution and Ecological Effect, Shenyang 110034, China
全文: PDF(3185 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

准确获取兴凯湖平原土壤有机碳含量及空间变异主控因素,对土壤有机碳调控、恢复及农业可持续发展具有重要意义。本研究基于野外实地采集的4 151个表层(0~20 cm)土样,探讨兴凯湖土壤平原有机碳空间分布特征及其主控因素。运用地统计学、回归分析等方法对比了成土母质、土壤质地、土壤类型、土地利用方式和土地开垦年限这5种因素对兴凯湖平原土壤有机碳空间分布的影响。结果表明: 研究区表层土壤有机碳含量为0.35%~14.49%,平均值2.80%,变异系数为 0.44,属中等强度的空间变异性。块金效应 C0/(C0+C)为 47.06%,表明空间分布受结构性因素和随机性因素的共同影响,土壤有机碳总体呈现“中、西部低,东、北部高”的分布格局。上述5种因素对土壤有机碳的影响均为极显著(P<0.01),其中成土母质、土壤类型、土地利用方式及开垦年限分别能够独立解释6.8%、3.8%、9.2%和3.3%的土壤有机碳空间变异,而土壤质地能独立解释30.1%的土壤有机碳空间变异,远大于其余4种因素,是研究区土壤有机碳空间分布的主控因素。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨泽
张一鹤
戴慧敏
刘国栋
刘凯
许江
关键词 土壤有机碳空间变异主控因素兴凯湖平原    
Abstract

Obtaining accurate soil organic carbon (SOC) content in the Xingkai Lake Plain and the main factor controlling its spatial variation is greatly significant for controlling and restoring the SOC content and achieving sustainable agricultural development. This study investigated the spatial distribution characteristics of the SOC content in the Xingkai Lake Plain and their control factor based on 4,151 topsoil samples collected at a depth of 0~20 cm in the field. Moreover, it compared the effects of soil parent materials, soil texture, soil type, land use type, and land reclamation duration (year) on the spatial distribution of the SOC content in the plain through geostatistical and regression analyses. The results are as follows. The SOC content in the topsoil of the study area is 0.35%~14.49% (average: 2.80%). It has a coefficient of variation of 0.44, indicating moderate spatial variations. It has a nugget-to-sill ratio of 47.06%, indicating that its spatial distributions are affected by both structural and random factors. It is low in the middle and west and is high in the east and north overall. All these five factors have significant effects on the SOC content (P<0.01). Among them, soil parent materials, soil type, land use type, and land reclamation duration can independently account for 6.8%, 3.8%, 9.2%, and 3.3% of the spatial variations in the SOC content, respectively. By contrast, soil texture can independently account for 30.1% of the spatial variations of the SOC content, which is far greater than that of the other four factors. Therefore, soil texture is the main control factor in the spatial distribution of the SOC content in the study area.

Key wordsSOC    spatial variation    main control factor    Xingkai Lake Plain
收稿日期: 2022-04-13      修回日期: 2022-08-16      出版日期: 2022-10-20
ZTFLH:  P632  
基金资助:中国地质调查局地质调查项目“兴凯湖平原及松辽平原西部土地质量地球化学调查”(DD20190520)
通讯作者: 许江
作者简介: 杨泽(1981-),男,高级工程师,2006年毕业于中国地震局地质研究所,主要从事生态地球化学调查与研究工作。Email:61421078@qq.com
引用本文:   
杨泽, 张一鹤, 戴慧敏, 刘国栋, 刘凯, 许江. 兴凯湖平原表层土壤有机碳空间变异的主控因素[J]. 物探与化探, 2022, 46(5): 1076-1086.
YANG Ze, ZHANG Yi-He, DAI Hui-Min, LIU Guo-Dong, LIU Kai, XU Jiang. Control factor of the spatial variations in the soil organic carbon content in the topsoil of the Xingkai Lake Plain. Geophysical and Geochemical Exploration, 2022, 46(5): 1076-1086.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.0186      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1076
Fig.1  研究区高程、采样点(a)及土地利用类型(b)
指标 样品数 最小值/% 最大值/% 均值/% 中位数/% 众数/% 标准偏差/% 方差/% 偏度 峰度 变异系数
SOC 4151 0.35 14.49 2.80 2.56 2.2 1.22 1.48 2.6 14.42 0.44
对数转换 4151 -0.46 1.16 0.41 0.41 0.34 0.17 0.03 -0.05 1.99 0.41
Table 1  表层土壤有机碳含量统计
Fig.2  研究区土壤有机碳含量及其对数转换值的频率分布
地区 平均值/% 范围/% 参考文献
兴凯湖平原 2.80 0.35~14.49 本文
黑龙江省 4.94 0.02~53.10 [28]
东北黑土 1.93a/2.55b 0.68~7.47 [29]
东北平原 1.78 [30]
中国大陆 2.23b 0.16~22.4 [31]
Table 2  研究区与其他地区表层土壤有机碳含量对比
理论模型 块金值(C0) 基台值(C0+C) 块金效应[C0/(C0+C)] 变程/km 拟合系数(R2) 残差(RSS)
球形模型 0.016 0.034 47.06 135.7 0.962 1.27E-05
Table 3  研究区土壤有机碳半方差函数模型及其参数
Fig.3  研究区土壤有机碳半方差函数
Fig.4  研究区土壤有机碳空间分布
成土母质 样品数 平均值/% 最小值/% 最大值/% 标准差/% 偏差/% 变异系数
全新世松散堆积物 901 2.81 0.35 13.79 1.24 1.54 0.44
晚更新世松散堆积物 1275 2.98 0.73 11.84 1.07 1.14 0.36
中更新世松散堆积物 148 3.08 1.25 13.72 1.51 2.28 0.49
新近纪砂岩、砂砾岩风化物 40 1.81 1.24 2.54 0.33 0.11 0.18
白垩纪砂岩风化物 829 2.59 0.56 14.49 1.19 1.41 0.46
侏罗纪砂岩及火山碎屑岩风化物 90 2.66 1.13 8.48 1.02 1.05 0.38
三叠纪板岩及粉砂岩风化物 34 3.2 1.57 9.58 1.59 2.52 0.5
二叠纪砂岩及火山碎屑岩风化物 67 2.54 1.29 6.29 0.94 0.89 0.37
泥盆纪火山碎屑岩风化物 47 2.72 1.52 4.65 0.81 0.65 0.3
三叠纪变质岩风化物 14 4.13 2.64 6.41 1.14 1.29 0.28
寒武纪变质岩风化物 9 2.16 1.53 2.92 0.55 0.3 0.25
太古宙变质岩风化物 29 3.03 1.08 9.51 1.96 3.85 0.65
元古宙变质岩风化物 149 3.15 0.74 12.9 1.78 3.17 0.57
花岗岩风化物 351 2.37 0.86 13.39 1.14 1.29 0.48
全新世玄武岩风化物 58 2.15 1.32 6.6 0.82 0.68 0.38
新近纪玄武岩风化物 110 3.3 1.05 7.78 1.15 1.32 0.35
Table 4  研究区不同成土母质土壤有机碳含量统计特征
有机碳含量/% 采样点数 平均值/% 最小值/% 最大值/% 标准差/% 方差/% 变异系数
<1 21 59.84 52.62 65.33 3.9 15.19 0.065
1~2 616 64.18 53.87 80.82 2.65 7.04 0.041
2~3 2136 65.61 55.45 78.1 2.6 6.75 0.04
3~5 1296 68.06 57.18 78.56 3.08 9.47 0.045
5~7 65 69.24 60.89 80.36 3.33 11.06 0.048
7~10 17 69.96 58.67 74.41 4.31 18.55 0.062
全区 4151 66.21 52.62 80.82 3.17 10.07 0.05
Table 5  研究区不同土壤有机碳含量土壤风化指数统计特征
土类 样品数 平均值/% 最小值/% 最大值/% 标准差/% 方差/% 变异系数
暗棕壤 940 2.69 0.56 14.49 1.33 1.78 0.5
白浆土 1482 2.67 0.69 13.39 1.01 1.02 0.38
草甸土 733 2.73 0.51 12.14 1.12 1.26 0.41
黑土 50 2.54 1.59 4.4 0.6 0.36 0.24
泥炭土 21 2.88 1.89 5.5 0.88 1.32 0.49
水稻土 102 2.47 1.13 5.16 0.85 0.72 0.34
沼泽土 818 3.28 0.35 13.79 1.43 2.06 0.44
Table 6  研究区不同土壤类型有机碳含量统计特征
土地利用 样品数 平均值/% 最小值/% 最大值/% 标准偏差/% 方差/% 变异系数
草地 132 3.33 0.71 7.76 1.37 1.87 0.41
湿地 285 3.08 0.35 9.58 1.46 2.15 0.48
水田 1368 2.99 0.96 12.14 0.99 0.99 0.33
有林地 775 2.92 0.69 14.49 1.44 2.08 0.49
灌木林 49 2.57 0.39 9.51 1.38 1.91 0.54
旱田 1276 2.53 0.56 13.79 1.17 1.38 0.46
居民用地 103 2.29 1.29 4.76 0.65 0.42 0.28
滩地 163 2.16 0.35 4.48 0.90 0.80 0.41
总计 4151 2.80 0.35 14.49 1.22 1.48 0.44
Table 7  研究区不同土地利用方式下土壤有机碳含量统计特征
开垦时间/a 样品数 平均值/% 最小值/% 最大值/% 标准偏差/% 方差/% 变异系数
0 1778 2.94 0.35 14.49 1.46 2.14 0.50
5 9 4.37 2.83 6.47 1.15 1.33 0.26
10 5 3.78 2.27 7.28 2.01 4.02 0.53
15 67 2.76 1.35 7.76 1.05 1.10 0.38
20 47 2.73 1.13 11.84 1.53 2.33 0.56
25 1072 2.92 0.76 12.14 1.02 1.03 0.35
40 1173 2.45 0.78 8.51 0.83 0.69 0.34
Table 8  研究区不同开垦年限土壤有机碳含量统计特征
影响因素 F 决定系数(R2) 矫正决定系数(R2) 显著性(sig)
成土母质 30.558 0.07 0.068 <0.01
土壤质地 1788.873 0.301 0.301 <0.01
土壤类型 28.017 0.039 0.038 <0.01
土地利用方式 58.013 0.094 0.092 <0.01
开垦年限 24.893 0.035 0.033 <0.01
综合 83.58 0.415 0.412 <0.01
Table 9  研究区不同因素对土壤有机碳的回归分析结果
Fig.5  研究区表层土壤CIA分布
[1] 方华军, 杨学明, 张晓平. 东北黑土有机碳储量及其对大气CO2的贡献[J]. 水土保持学报, 2003, 17(3):9-12.
[1] Fang H J, Yang X M, Zhang X P. Organic carbon stock of black soils in northeast China and it’s contribution to atmospheric CO2[J]. Journal of Soil and Water Conservation, 2003, 17(3): 9-12.
[2] Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 7(2): 151-163.
[3] 赵其国. 提升对土壤认识,创新现代土壤学[J]. 土壤学报, 2008, 45(5): 771-777.
[3] Zhao Q G. Improving knowledge of soil, innovating modern pedology[J]. Acta Pedologica Sinica, 2008, 45(5): 771-777.
[4] Pan G X, Smith P, Pan W N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China[J]. Agriculture,Ecosystems and Environment, 2009, 129(1/3): 344-348.
doi: 10.1016/j.agee.2008.10.008
[5] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627.
doi: 10.1126/science.1097396 pmid: 15192216
[6] 江叶枫, 饶磊, 郭熙, 等. 江西省耕地土壤有机碳空间变异的主控因素研究[J]. 土壤, 2018, 50(4):778-786.
[6] Jiang Y F, Rao L, Guo X, et al. Study on main controlling factors of spatial variability of farmland SOC in Jiangxi Province[J]. Soils, 2018, 50(4):778-786.
[7] 罗由林, 李启权, 王昌全, 等. 四川省仁寿县土壤有机碳空间分布特征及其主控因素[J]. 中国生态农业学报, 2015, 23(1):34-42.
[7] Luo Y L, Li Q Q, Wang C Q, et al. Spatial variability of soil organic carbon and related controlling factors in Renshou County, Sichuan Province[J]. Chinese Journal of Eco-Agriculture, 2015, 23(1):34-42.
[8] 李启权, 王昌全, 岳天祥, 等. 基于RBF神经网络的土壤有机质空间变异研究方法[J]. 农业工程学报, 2010, 26(1):87-93.
[8] Li Q Q, Wang C Q, Yue T X, et al. Method for spatial variety of soil organic matter based on radial basis function neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1):87-93.
[9] 潘成忠, 上官周平. 土壤空间变异性研究评述[J]. 生态环境, 2003, 12(3):371-375.
[9] Pan C Z, Shangguan Z P. Review of the research on soil spatial variability[J]. Ecology and Environment Sciences, 2003, 12(3):371-375.
[10] 赵明松, 张甘霖, 王德彩, 等. 徐淮黄泛平原土壤有机质空间变异特征及主控因素分析[J]. 土壤学报, 2013, 50(1):1-11.
[10] Zhao M S, Zhang G L, Wang D C, et al. Spatial variability of soil organic matter and its dominating factors in Xu-Huai alluvial plain[J]. Acta Pedologica Sinica, 2013, 50(1):1-11.
[11] 顾成军, 史学正, 于东升, 等. 省域土壤有机碳空间分布的主控因子——土壤类型与土地利用比较[J]. 土壤学报, 2013, 50(3):425-432.
[11] Gu C J, Shi X Z, Yu D S, et al. Main factor controlling soc spatial distribution at the province scale as affected by soil type and land us[J]. Acta Pedologica Sinica, 2013, 50(3):425-432.
[12] 胡玉福, 邓良基, 张世熔, 等. 川中丘陵区典型小流域土壤氮素空间变异特征及影响因素研究[J]. 水土保持学报, 2008, 22(3):70-75.
[12] Hu Y F, Deng L J, Zhang S R, et al. Study on spatial variability and its influential factors of soils nitrogen in typical small watershed in the hilly region of the middle Sichuan[J]. Journal of Soil and Water Conservation, 2008, 22(3):70-75.
[13] 李婷, 张世熔, 刘浔, 等. 沱江流域中游土壤有机质的空间变异特点及其影响因素[J]. 土壤学报, 2011, 48(4):863-868.
[13] Li T, Zhang S R, Liu X, et al. Spatial variation of soil organic matter and its influence factors in the middle reaches ofTuojiang river basin[J]. Acta Pedologica Sinica, 2011, 48(4):863-868.
[14] Zhang S W, Huang Y F, Shen C Y, et al. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information[J]. Geoderma, 2012, 171/172: 35-43.
doi: 10.1016/j.geoderma.2011.07.012
[15] 房飞, 唐海萍, 李滨勇. 不同土地利用方式对土壤有机碳及其组分影响研究[J]. 生态环境学报, 2013, 22(11): 1774-1779.
[15] Fang F, Tang H P, Li B Y. Effects of land use type on soil organic carbon and its fractions[J]. Ecology and Environment Sciences, 2013, 22(11): 1774-1779.
[16] 王晓丽, 王嫒, 石洪华, 等. 南长山岛不同土地利用方式下的土壤有机碳密度[J]. 环境科学学报, 2014, 34(4): 1009-1015.
[16] Wang X L, Wang A, Shi H H, et al. Soil organic carbon density under different land use types on the Nanchangshan Island of Miaodao Archipelago[J]. Acta Scientiae Circumstantiae, 2014, 34(4): 1009-1015.
[17] Rasmussen C, Torn M S, Southard R J. Mineral assemblage and aggregates control carbon dynamics in a California conifer forest[J]. Soil Science Society of America Journal, 2005, 69(6): 1711-1721
doi: 10.2136/sssaj2005.0040
[18] 赵明松, 张甘霖, 李德成, 等. 江苏省土壤有机质变异及其主要影响因素[J]. 生态学报, 2013, 33(16):5058-5066.
[18] Zhao M S, Zhang G L, Li D C, et al. Variability of soil organic matter and its main factors in Jiangsu Province[J]. Acta Ecologica Sinica, 2013, 33(16):5058-5066.
doi: 10.5846/stxb201205200749
[19] 范胜龙, 黄炎和, 林金石. 表征土壤有机碳区域分布的优化空间插值模型研究——以福建省龙海市为例[J]. 水土保持研究, 2011, 18(6):1-5.
[19] Fan S L, Huang Y H, Lin J S. The optimized interpolation models and its relationship with soil sampling density on detecting spatial variability of farmland soil organic carbon:A case study in Longhai City,Fujian Province[J]. Research of Soil and Water Conservation, 2011, 18(6):1-5.
[20] 中华人民共和国国土资源部. DZ/T 0258-2014多目标区域地球化学调查规范(1:250 000)[S]. 北京: 中国标准出版社, 2015.
[20] Ministry of Land and Resources of the People's Republic of China. DZ/T 0258-2014 Specification of multi-purpose regional geochemical survey[S]. Beijing: Geological Publishing House, 2015.
[21] 中华人民共和国国土资源部. DZ/T 0295-2016土地质量地球化学评价规范[S]. 北京: 地质出版社, 2016.
[21] Ministry of Land and Resources of the People's Republic of China. DZ/T 0295-2016 Specification of land quality geochemical assessment[S]. Beijing: Geological Publishing House, 2016.
[22] 綦魏, 付建飞, 王恩德, 等. 基于化学蚀变指数(CIA)的辽河流域土壤风化程度研究[J]. 东北大学学报:自然科学版, 2012, 33(3):444-447.
[22] Qi W, Fu J F, Wang E D, et al. Study of the soil weathering degree of the Liao River basin Based on CIA index[J]. Journal of Northeastern University:Natural Science, 2012, 33(3):444-447.
[23] Mclennan S M. Weathering and global denudation[J]. Journal of Geology, 1993, 101(2):295-303.
doi: 10.1086/648222
[24] 王攀, 宁凯, 石迎春, 等. 吴起全新世土壤剖面常量元素地球化学特征[J]. 土壤通报, 2019, 50(6):1261-1268.
[24] Wang P, Ning K, Shi Y C, et al. Geochemical characteristics of major elements of holocene soil from Wuqi, Shaanxi Province[J]. Chinese Journal of Soil Science, 2019, 50(6):1261-1268.
[25] 孙厚云, 孙晓明, 贾凤超, 等. 河北承德锗元素生态地球化学特征及其与道地药材黄芩适生关系[J]. 中国地质, 2020, 47(6):1646-1667.
[25] Sun H Y, Sun X M, Jia F C, et al. The eco-geochemical characteristics of germanium and its relationship with the genuine medicinal material Scutellariabaicalensis in Chengde, Hebei Province[J]. Geology in China, 2020, 47(6):1646-1667.
[26] 徐树建, 倪志超, 丁新潮. 山东平阴黄土剖面常量元素地球化学特征[J]. 矿物岩石地球化学通报, 2016, 35(2):353-359.
[26] Xu S J, Ni Z C, Ding X C. Geochemical characteristics of major elements of the Pingyin loess in Shandong Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(2): 353-359.
[27] 李绪龙, 张霞, 林春明, 等. 常用化学风化指标综述:应用与展望[J]. 高校地质学报, 2022, 28(1):51-63.
[27] Li X L, Zhang X, Lin C M, et al. Overview of the application and prospect of common chemical weathering indices[J]. Geological Journal of China Universities, 2022, 28(1):51-63.
[28] 黑龙江省土地管理局, 黑龙江省土壤普查办公室. 黑龙江土壤[M]. 北京: 农业出版社,1994.
[28] Heilongjiang Land Management Bureau, Heilongjiang Province Soil Census Office. Heilongjiang soil[M]. Beijing: China agricultural machinery press,1994.
[29] 解宏图, 郑立臣, 何红波, 等. 东北黑土有机碳、全氮空间分布特征[J]. 土壤通报, 2006, 37(6):1058-1061.
[29] Xie H T, Zheng L C, He H B, et al. Spatial distribution of soil organic carbon and total nitrogen in mollisols in the Northeast of China[J]. Chinese Journal of Soil Science, 2006, 37(6):1058-1061.
[30] 戴慧敏, 刘国栋. 东北黑土地1:25万土地质量地球化学调查报告[R]. 中国地质调查局沈阳地质调查中心, 2019.
[30] Dai H M, Liu G D. Land quality geochemical survey report of black soil in northeast China on scale 1:250 000[R]. Shenyang Geological Survey Center,CGS, 2019.
[31] 罗梅, 郭龙, 张海涛. 基于环境变量的中国土壤有机碳空间分布特征[J]. 土壤学报, 2020, 57(1):48-59.
[31] Luo M, Guo L, Zhang H T, et al. Characterization of spatial distribution of soil organic carbon in China[J]. Acta Pedologica Sinica, 2020, 57(1):48-59.
[32] Anderson D W, Paul E A. Organo-mineral complexes and their study by radiocarbon dating[J]. Journal of the Soil Science Society of America, 1984, 48(2):298-301.
doi: 10.2136/sssaj1984.03615995004800020014x
[33] 王茹, 张凤荣, 王军艳, 等. 潮土区不同质地土壤的养分动态变化研究[J]. 土壤通报, 2001, 32(6):255-257.
[33] Wang R, Zhang F R, Wang J Y. Temporal changing of plant nutrients in different texture soils in the North China Plain[J]. Chinese Journal of Soil Science, 2001(6):255-257.
[34] Schimel D S, Braswell B H, Holland E A, et al. Climatic,edaphic,and biotic controls over storage and turnover of carbon in soils[J]. Global Biogeochemical Cycles, 1994, 8(3):279-294.
doi: 10.1029/94GB00993
[35] 张秀芝, 赵相雷, 李波, 等. 基于区域土壤元素地球化学的河北平原土壤质地类型划分[J]. 第四纪地质研究, 2017, 37(1):25-35.
[35] Zhang X Z, Zhao X L, Li B, et al. The classifying of soil texture types based on the regional soil geochemical elements in Hebei plain[J]. Quaternary Sciences, 2017, 37(1):25-35.
[36] Hook P B, Burke I C. Biogeochemistry in a shortgrass landscape:Control by topography,soil texture and microclimate[J]. Ecology, 2000, 81(10):2686-2703.
doi: 10.1890/0012-9658(2000)081[2686:BIASLC]2.0.CO;2
[37] Parton W J, Schimel D S, Cole C V O N, et al. Analysis of factors controlling soil organic matter levels in great plains grasslands[J]. Soil Science society of america journal, 1987, 51(5):1173-1179.
doi: 10.2136/sssaj1987.03615995005100050015x
[38] 刘驰, 刘希瑶, 刘澎. 松辽平原典型黑土区有机质的变化及影响因素分析[J]. 地质与资源, 2020, 29(6):550-555.
[38] Liu C, Liu X Y, Liu P. Analysis on the changes of organic matters and their influencing factors of typical black soil areas in Songliao plain[J]. Geology and Resources, 2020, 29(6):550-555.
[39] Bell M J, Worrall F. Estimating a region's SOC baseline:The undervalued role of land-management[J]. Geoderma, 2009, 152(1-2):74-84.
doi: 10.1016/j.geoderma.2009.05.020
[1] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[2] 张一鹤, 杨泽, 戴慧敏, 刘国栋, 韩晓萌, 李秋燕. 穆棱河—兴凯湖平原土壤有机碳、全氮的时空变异特征[J]. 物探与化探, 2022, 46(5): 1050-1055.
[3] 王鹏, 赵君, 刘拓, 周一凡, 魏锦萍, 王磊. 半干旱区有机质与全氮空间变异的尺度效应特征——以延安市为例[J]. 物探与化探, 2022, 46(4): 1011-1020.
[4] 彭敏, 李括, 刘飞, 唐世琪, 马宏宏, 杨柯, 杨峥, 郭飞, 成杭新. 东北平原区地块尺度土地质量地球化学评价合理采样密度研究[J]. 物探与化探, 2019, 43(2): 338-350.
[5] 刘文辉. 甘肃省张掖—永昌地区土壤有机碳密度 估算及其空间分布特征[J]. 物探与化探, 2013, 37(3): 552-556.
[6] 刘文辉, 李春亮, 吴永强. 甘肃省兰州—白银地区土壤有机碳库储量估算与空间分布特征[J]. 物探与化探, 2012, 36(3): 367-371.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com