Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 440-449    DOI: 10.11720/wtyht.2021.1044
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
马氏距离法在东昆仑东段多元异常圈定中的对比试验
耿国帅1,2(), 杨帆3,4()
1.中国地质大学(北京) 地球科学与资源学院,北京 100083
2.中国地质调查局 地球物理调查中心,河北 廊坊 065000
3.北京矿产地质研究院,北京 100012
4.中国地质调查局 土地质量地球化学调查评价研究中心,河北 廊坊 065000
The application of Mahalanobis distance to the delineation of multivariate outliers in the East Kunlun Mountains
GENG Guo-Shuai1,2(), YANG Fan3,4()
1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
2. Geophysical Survey Center, China Geological Survey, Langfang 065000, China
3. Beijing Institute of Geology for Mineral Resources, Beijing 100012, China
4. Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China
全文: PDF(3220 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

马氏距离是一种多元异常识别方法,目前已有多种基于马氏距离的异常识别方法。笔者选择青海省东昆仑东段1∶50万水系沉积物测量数据,对比常规马氏距离、基于最小方差行列式(FMCD)的稳健马氏距离、基于校正的最小方差行列式的稳健马氏距离(Adaptive)和基于协中值的稳健马氏距离(Comedian)4种方法在识别Cu、Co、Cr、Ni、V、Fe,Cd、Cu、Mo、Pb、Zn、Ag和Au、As、Sb三种组合异常中的应用效果。结果显示,基于Comedian方法识别的异常效果最好,而常规方法识别的异常效果最差,因此Comedian方法是该区最有效的多元异常识别方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
耿国帅
杨帆
关键词 马氏距离常规方法FMCD方法Adaptive方法Comedian方法异常圈定东昆仑    
Abstract

Mahalanobis distance is a multivariate outlier detection method. At present, there are many outlier detection methods based on Mahalanobis distance. The purpose of this paper is to compare the advantages/disadvantages of various Mahalanobis distances in identifying multivariate outliers and to select a more suitable method for identifying multivariate anomalies. The authors selected 1∶500 000 stream sediment data in the East Kunlun Mountains of Qinghai Province to compare the effects of four methods: classical Mahalanobis distance, robust Mahalanobis distance based on minimum variance determinant (FMCD), robust mahalanobis distance based on Adaptive minimum variance determinant (Adaptive), and robust mahalanobis distance based on Comedian (Comedian) in identifying Cu, Co, Cr, Ni, V, Fe; Cd, Cu, Mo, Pb, Zn, Ag and three association outliers of Au, As, Sb. The result shows that the Comedian method is the superior, while the classical method is the worst. So Comedian method is the most effective multivariate outlier detection method in this area.

Key wordsMahalanobis distance    classical method    FMCD method    Adaptive method    Comedian method    outlier delineation    East Kunlun Mountains
收稿日期: 2020-02-06      修回日期: 2020-10-18      出版日期: 2021-04-20
ZTFLH:  P632  
基金资助:中国地质调查局地质调查项目(DD20208001);中国地质调查局地质调查项目(DD20190522);中国地质调查局地质调查项目(DD20190527);中央科研院所基本科研业务专项项目(AS2020Y06);中央科研院所基本科研业务专项项目(AS2020J06)
通讯作者: 杨帆
作者简介: 耿国帅(1972-),男,高级工程师,博士研究生,主要从事勘查地球化学相关基础理论研究和调查评价工作。Email: hnsmxggs@163.com
引用本文:   
耿国帅, 杨帆. 马氏距离法在东昆仑东段多元异常圈定中的对比试验[J]. 物探与化探, 2021, 45(2): 440-449.
GENG Guo-Shuai, YANG Fan. The application of Mahalanobis distance to the delineation of multivariate outliers in the East Kunlun Mountains. Geophysical and Geochemical Exploration, 2021, 45(2): 440-449.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1044      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/440
Fig.1  东昆仑地区大地构造分区
1—主缝合带;2—次缝合带;3—新元古代-早古生代结合带俯冲方向(一侧有齿者为单向俯冲,两侧有齿者为双向俯冲);4—晚古生代-早中生代缝合带俯冲方向;5—A型俯冲带;6—公路;7—研究区位置;Ⅰ—柴达木地块;Ⅱ—东昆仑造山带;Ⅱ1—东昆北早古生代弧后裂陷带(昆北带);Ⅱ2—东昆中岩浆弧带(昆中带);Ⅱ3—东昆南构造-混杂岩带(昆南带);Ⅲ—巴颜喀拉造山带(北巴带)
组合 类型 有用组分 矿床(点)
VHMS型 Cu、Co、S(Au) 督冷沟、驼路沟
与基性岩有关的矿床组合 SEDEX型 Cu、Co、Pb、Zn(S、Ag、Au) 纳赤台
沉积变质型 Fe、Mn 洪水河、清水河
与中酸性岩浆岩有关矿床组合 斑岩型 Cu(Mo,Au) 托克妥
矽卡岩型 Fe、Pb、Zn、Co、Cu、Au 白石崖
造山型金矿组合 蚀变岩型 Au、As、Sb 五龙沟、小干沟、东大滩、西藏大沟、大场
石英脉型 Au、Sb、As 开荒北
Table 1  研究区矿床成因类型
Fig.2  3种元素组合的常规(a)和稳健(b)马氏距离对比
元素组合 常规 FMCD Adaptive Comedian
异常下限 异常个数 异常下限 异常个数 异常下限 异常个数 异常下限 异常个数
Cu、Co、Cr、Ni、V、Fe 3.8 238 3.8 747 4.06 642 5.31 617
Cd、Cu、Mo、Pb、Zn、Ag 3.8 192 3.8 710 4.15 592 4.92 703
Au、As、Sb 3.06 173 3.06 753 3.4 658 3.85 793
  4种马氏距离确定的异常下限及异常点数统计
Fig.3  元素标准化后的箱线
Fig.4  4种马氏距离圈定的Co、Cr、Cu、Ni、V、Fe组合异常
Fig.5  4种马氏距离圈定的Cd、Cu、Mo、Pb、Zn、Ag组合异常
Fig.6  4种马氏距离圈定的Au,As,Sb组合异常
元素组合 Adaptive Comedian both
异常点数 占比/% 异常点数 占比/% 异常点数 占比/%
Cu、Co、Cr、Ni、V、Fe 233 27.61 201 23.82 410 48.58
Cd、Cu、Mo、Pb、Zn、Ag 275 28.19 387 39.53 316 32.28
Au、As、Sb 211 21.79 356 35.11 437 43.10
Table 3  Adaptive和Comedian异常点统计
Fig.7  Adaptive和Comedian识别的Co、Cr、Cu、Ni、V、Fe组合异常点分布
[1] Lindqvist L, Lundholm I, Nisca D, et al. Multivariate geochemical modeling and integration with petrophysical[J]. Geochemical Explor, 1987,29:279-294.
doi: 10.1016/0375-6742(87)90082-3
[2] Rose A W, Hawkes H E, Webbs J S. Geochemistry in mineral exploration[M]. London: Academic Press, 1979: 657.
[3] Stanely C R, Sinclair A J. Anomaly recognition for multi-element geochemical—A background characterization approach[J]. Geochemical Explor, 1987,29:333-353.
doi: 10.1016/0375-6742(87)90085-9
[4] Govett G J S. Rock geochemistry in mineral exploration, Vol.3 of handbook of exploration geochemistry[M]. New York:Elsevier Science, 1983: 462.
[5] Rocke D M, Woodruff D L. Identification of outliers in multivariate data[J]. Journal of the American Statistical Association, 1996,91:1047-1061.
doi: 10.1080/01621459.1996.10476975
[6] Yeager M, Gregory B, Key C, et al. On using robust Mahalanobis distance estimations for feature discrimination in a damage detection scenario[J]. Structural Health Monitoring, 2019,18(1):245-253.
[7] Xu L, Songren D, Lifang L, et al. Outlier detection based on robust mahalanobis distance and its application[J]. Open Journal of Statistics, 2019,9:15-26.
[8] Hubert M, Rousseeuw P J, Van Aelst S. High-breakdown robust multivariate methods[J]. Statistical Science, 2008,23:92-119.
[9] Mutalib S A, Ibrahim K. Identification of outliers: A simulation study[J]. Journal of Engineering and Applied Science, 2015,10(1):326-330.
[10] Werner M. Idetification of multivariate outliers in large data sets[D]. Denver:University of Colorado, 2003.
[11] Barnett V, Lewis T. Outliers in statistical data(3rd edition)[M]. New York:Wiley & Sons, 1994.
[12] Rousseeuw P J, Zomeren B C. Unmasking multivariate outliers and leverage points[J]. Journal of the American statistical association, 1990,85(411):633-639.
doi: 10.1080/01621459.1990.10474920
[13] 宋运红, 李振祥, 李连辉, 等. 马氏距离与欧氏距离方法在地球化学异常处理中的对比[J]. 吉林地质, 2008,27(4):117-121.
[13] Song Y H, Li Z X, Li L H, et al. Contrast between Mahalanobis distance and Eucliean distance in geochemical exploration processing[J]. Jinlin Gology, 2008,27(4):117-121.
[14] Roberson G. Multiple outlier detection and cluster analysis of multivariate normal data[D]. Stellenbosch:University of Stellenbosch, 2003.
[15] Pearson E, Chandra Sekar C. The efficiency of statistical tools and a criterion for the rejection of outlying observations[J]. Biometrika, 1936,28:308-320.
[16] Chork C Y. Unmasking multivariate anomalous observations in exploration geochemical data from sheetedvein tin mineralisation near Emmaville, N.S.W[J]. Journal of Geochemical Exploration, 1990,37(2):205-223.
[17] Hadi A S. Identifying multiple outliers in multivariate data[J]. Journal of the Royal Statistical Society, Series B, 1992,54(3):761-771.
[18] Chork C Y, Salminen R. Interpreting exploration geochemical data from Outukumpu, Finland: A MVE-robust factor analysis[J]. Journal of Geochemical Exploration, 1993,48(1):1-20.
[19] Hardin J, Rocke D M. The distribution of robust distances[J]. Journal of Computational and Graphical Statistics, 2005,14:910-927.
[20] Hampel F R, Ronchetti E M, Rousseeuw P J, et al. Robust statistics:The approach based on influence functions[M]. New Jersey:John Wiley & Sons, 1986.
[21] Hubert M, Rousseeuw P J, Van Aelst S. High-breakdown robust multivariate methods. Statistical[J]. Science, 2008,23:92-119.
doi: 10.1126/science.ns-23.576.92-d pmid: 17736351
[22] Rousseeuw P J, Driessen K V. Algorithm for the Minimum covariance determinant estimator[J]. Technometrics, 1999,41(3):212-223.
[23] Majewska J. Identification of multivariate outliers-problems and challenges of visualization methods[J]. Informatykai Ekonometria, 2015,247(4):69-83.
[24] Filzmoser P, Garrett R G, Reimann C. Multivariate outlier detection in exploration geochemistry[J]. Compurers & Geosciences, 2005,31:579-587.
[25] Sajesh T A, Srinivasan M R. outlier detection for high dimensional data using the comedian approach[J]. Journal of Statistical Computation and Simulation, 2012,82(5):745-757.
[26] 张德全. 东昆仑地区综合找矿预测与突破[M]. 北京: 地质出版社, 2003.
[26] Zhang D Q. Comprehensive prospecting prediction and breakthrough in Dongkunlun area of Qinghai Province[M]. Beijing: Geological Publishing House, 2003.
[27] 丁清峰. 东昆仑造山带区域成矿作用与矿产资源评价[D]. 长春:吉林大学, 2004.
[27] Ding Q F. Metallogenesis and mineral resources assessment in East Kunlun Orogenic belt[D]. Changchun:Jilin University, 2004.
[28] 田立明. 青海省东昆仑成矿带区域地球化学数据处理及靶区优选[D]. 武汉:中国地质大学(武汉), 2017.
[28] Tian L M. Geochemical data processing and targets optimization in Eastern Kunlun orogenic belt, Qinghai province[D]. Wuhan:China University of Geosciences(Wuhan), 2017.
[29] Mahalanobis P C. On the generalized distance in statistics[J]. National Institute of Science of India, 1936,2:49-55.
[30] 张文秦, 汪彩芳, 刘成东. 依据化探成果对东昆仑地质背景的讨论[J]. 现代地质, 2002,16(3):257-262.
[30] Zhang W Q, Wang C F, Liu C D. A discussion on geological based on background of the East Kunlun area by geochemical exploration data[J]. Geoscience, 2002,16(3):257-262.
[31] 安国英. 青海省东昆仑地区地球化学异常特征及金矿找矿靶区筛选与评价[J]. 物探与化探, 2013,37(2):218-223.
[31] An G Y. Geochemical characteristics and gold metallogenic target area selection and evaluation in east Kunlun region, Qinghai Province[J]. Geophysical and Geochemical Exploration, 2013,37(2):218-223.
[32] 安国英. 青海省东昆仑中段地区构造地球化学特征及地质意义[J]. 物探与化探, 2015,39(1):69-75.
[32] An G Y. Tectonic geochemistry of the central segment of the East Kunlun Mountains in Qinghai Province and its geological significance[J]. Geophysical and Geochemical Exploration, 2015,39(1):69-75.
[33] Maronna R A, Yohai V J. Robust and efficient estimation of multivariate scatter and location[J]. Computational Statistics & Data Analysis, 2017,109:64-75.
[1] 耿国帅, 杨帆, 郭建娜. 变换后数据的因子分区标准化在东昆仑东段地球化学异常圈定中的应用[J]. 物探与化探, 2020, 44(1): 112-121.
[2] 王成浩, 程丹丹. 基于马氏距离模板特征的地雷目标识别研究[J]. 物探与化探, 2019, 43(4): 899-903.
[3] 曹园园, 李新虎. 地球化学综合异常的圈定及找矿效果[J]. 物探与化探, 2017, 41(1): 58-64.
[4] 郭友钊, 郭心玮, 王兴春, 李磊. 东昆仑夏日哈木HS26异常勘探方向的极化率研究[J]. 物探与化探, 2016, 40(2): 353-359.
[5] 安国英. 青海省东昆仑中段地区构造地球化学特征及地质意义[J]. 物探与化探, 2015, 39(1): 69-75.
[6] 安国英. 青海省东昆仑地区地球化学异常特征及金矿靶区筛选与评价[J]. 物探与化探, 2013, 37(2): 218-224.
[7] 崔晓亮, 刘婷婷, 王文恒, 景明, 白云. 东昆仑布青山地区水系沉积物测量地球化学特征及找矿方向[J]. 物探与化探, 2011, 35(5): 573-578.
[8] 孙王勇, 孟军海, 王成栋, 范长安, 王生林, 王昌勇. 东昆仑东段深大断裂的新认识[J]. 物探与化探, 2007, 31(5): 408-413,439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com