Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (4): 938-948    DOI: 10.11720/wtyht.2020.0070
  2020年重磁方法理论及应用研究专题研讨会专栏 本期目录 | 过刊浏览 | 高级检索 |
基于重磁异常的嘉偕平顶山群构造区划特征研究
马涛1,2,3(), 朱莹洁1,2,3,4, 杨永5,6, 纪晓琳1,2,3, 王丁丁1,2,3, 刘金兰1,2,3, 王万银1,2,3()
1.长安大学 重磁方法技术研究所,陕西 西安 710054
2.长安大学 地质工程与测绘学院,陕西 西安 710054
3.长安大学 西部矿产资源与地质工程教育部重点实验室,陕西 西安 710054
4.纽芬兰纪念大学 地球科学系,加拿大 圣约翰斯市 A1B3X5
5.自然资源部 海底矿产资源重点实验室,广东 广州 510075
6.中国地质调查局 广州海洋地质调查局,广东 广州 510075
Research on tectonic division in Jiaxie guyots based on gravity and magnetic anomalies
Tao MA1,2,3(), Ying-Jie ZHU1,2,3,4, Yong YANG5,6, Xiao-Lin JI1,2,3, Ding-Ding WANG1,2,3, Jin-Lan LIU1,2,3, Wan-Yin WANG1,2,3()
1. Institute of Gravity and Magnetic Technology,Chang’an University,Xi’an 710054,China
2. College of Geology Engineering and Geomatics,Chang’an University,Xi’an 710054,China
3. Key Laboratory of Western China’s Mineral Resources and Geological Engineering,Ministry of Education,Chang’an University,Xi’an 710054,China
4. Department of Earth Sciences,Memorial University of Newfoundland,St.Johns’,A1B3X5,Canada
5. Key Laboratory of Marine Mineral Resources,Guangzhou 510075,China
6. Ministry of Natural and Resources,Guangzhou Marine Geological Survey,Guangzhou 510075,China
全文: PDF(2861 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

西太平洋嘉偕平顶山群是中国富钴结壳合同区之一,蕴藏钴等战略性金属矿产资源。由于海山的局部构造对矿产资源的宏观分布具有重要的控制作用,因此研究海山的构造区划对于认识海山的形成过程及矿产资源勘探具有十分重要的意义。笔者利用嘉偕平顶山群的重、磁异常数据和地形数据,采用归一化总水平导数垂向导数(NVDR-THDR)断裂识别方法与曲率属性深度反演方法研究了嘉偕平顶山群的断裂分布特征,利用最小曲率位场分离方法研究了侧翼裂谷带及重力滑塌区的分布特征。研究表明,嘉偕平顶山群的断裂走向以NW和NE向为主,其次为NNW和NEE向;断裂视深度在3 000~7 000 m之间,且NW向断裂深度比NE向断裂的深度浅,NW向与NE向断裂相互交叉构成了呈雁行式排列的共轭剪切断裂带,为海山形成与岩墙侵入提供了重要通道。侧翼裂谷带是岩浆沿断裂通道侵入发育而成,使得海山呈现不规则的星形,因此通常位于海山地形不规则延伸地带。在侧翼裂谷带的发育过程中,由于受地震等构造活动的影响,会产生重力滑塌,在其两侧形成了滑塌沉积区,因此重力滑塌区通常位于海山陡峭边缘与侧翼裂谷带的两侧。本次研究成果为嘉偕平顶山群的形成过程及富钴结壳资源综合评价提供了重要的构造依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马涛
朱莹洁
杨永
纪晓琳
王丁丁
刘金兰
王万银
关键词 嘉偕平顶山群NVDR-THDR最小曲率曲率属性断裂侧翼裂谷带重力滑塌    
Abstract

The Jiaxie Guyots, located in the western Pacific and belongs to China's contract areas of cobalt-rich ferromanganese crusts, contains strategic metal mineral resources, especially cobalt. Local structures of the guyots play an important controlling role in the macroscopic distribution of these resources, which leads to the research on the tectonic division of the guyots to understand their formation processes and explore mineral resources. In this paper, the gravity and magnetic data as well as topographic data were used to delineate fracture features of Jiaxie Guyots by using the normalized vertical derivative of the total horizontal derivative (NVDR-THDR) edge recognition method and curvature attribute depth inversion method. The minimum curvature potential field separation method was used to delineate the distribution features of flank rift zones and gravity slide areas. The results show that faults of Jiaxie Guyots are mainly NW- and NE-trending, followed by NNW- and NEE-trending. The range of apparent depths of faults is between 3000 and 7000 m, and usually the depth of NW-trending faults are shallower than that of NE-trending faults. The faults of these two different directions intersect to form a conjugate shear fault zone, showing a geese-like arrangement, which provides magma volcanic conduits for seamount formation and rock wall intrusion. The flank rift zones are generally located in irregular terrain extensions of guyots, because they were shaped with magma intrusion and reshaped the seamount as irregularly appearances. During the development of flank rift zones, the gravity slide areas were also formed due to the influence of tectonic activities like earthquakes, and commonly they were located on sharp sides of margins and two sides of flank rift zones. The authors hold that this study of geological structures could give strong support to the study of the formation of Jiaxie Guyots and the comprehensive evaluation of cobalt-rich crust ferromanganese.

Key wordsJiaxie Guyots    NVDR-THDR    minimum curvature    curvature attribute    fault    flank rift zone    gravity slide
收稿日期: 2020-02-17      出版日期: 2020-08-28
:  P631  
基金资助:中国大洋“十三五”资源环境类课题“合同区海山地形单元识别与底质类型研究”(DY135-C1-1-03);国家重点研发计划项目“典型覆盖区航空地球物理技术示范与处理解释软件平台开发”项目(2017YFC0602200);课题“航空地球物理数据综合处理解释方法研究及软件开发”(2017YFC0602202)
通讯作者: 王万银
作者简介: 马涛(1994-), 男, 长安大学硕士研究生, 研究方向为重、磁方法理论及应用。Email:taoma@chd.edu.cn
引用本文:   
马涛, 朱莹洁, 杨永, 纪晓琳, 王丁丁, 刘金兰, 王万银. 基于重磁异常的嘉偕平顶山群构造区划特征研究[J]. 物探与化探, 2020, 44(4): 938-948.
Tao MA, Ying-Jie ZHU, Yong YANG, Xiao-Lin JI, Ding-Ding WANG, Jin-Lan LIU, Wan-Yin WANG. Research on tectonic division in Jiaxie guyots based on gravity and magnetic anomalies. Geophysical and Geochemical Exploration, 2020, 44(4): 938-948.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0070      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I4/938
数据类型 数据量
/km
测线间距
/km
备注
地形 约2500 4~8 EM122多波束系统
重力 约2500 4~8 ZLS重力仪
约2000 12 G801磁力仪
Table 1  船测数据相关参数
Fig.1  嘉偕平顶山群地形(黑色实线为地形等高线,图2~图8图13~图17同)
Fig.2  嘉偕平顶山群重力异常
Fig.3  嘉偕平顶山群磁异常
Fig.4  嘉偕平顶山群化极磁异常
Fig.5  嘉偕平顶山群化极磁异常NVDR-THDR
Fig.6  嘉偕平顶山群断裂平面位置分布
Fig.7  嘉偕平顶山群断裂和剩余化极磁异常
Fig.8  嘉偕平顶山群断裂平面位置分布和视深度
Fig.9  嘉偕平顶山群断裂走向玫瑰花图
Fig.10  嘉偕平顶山群断裂长度统计直方图
Fig.11  麦哲伦海山链断层与褶皱[6]
1—深海板块;2—海山火成岩(亚碱性玄武岩);3—山顶沉积岩;4—火山主体覆盖层;5—等深线;6—海山编号;7—纬向火山区;8—控制火山共轭右旋和左旋走滑断层的对角线系统;9—麦哲伦海山边界(潜在的右旋走滑断层带);10—大洋地壳挤压方向
Fig.12  岩石圈分层条件下火山带形成的地球动力学模型[5]
1—岩石圈水平滑动面和特定的岩屑层;2—岩石圈下部的走滑断层;3—潜在走滑断层;4—雁行状短岩线;5—减压作用下形成的岩浆室;6—充当岩浆通道的右旋和左旋走滑断层对角线系统;7—岩石圈下部的走滑断层在深海板块表面的投影;8—深海板块中的走滑断层;9—软流圈镁铁质岩石和流体沿岩石圈下部走滑断层的上升;10—物质从岩浆室向深海板块表面的传递
Fig.13  嘉偕平顶山群重力异常NVDR-THDR
Fig.14  嘉偕平顶山群侧翼裂谷带与地形NVDR-THDR
Fig.15  嘉偕平顶山群侧翼裂谷带与剩余重力异常
Fig.16  嘉偕平顶山群侧翼裂谷带与剩余化极磁异常
Fig.17  嘉偕平顶山群重力滑塌区与剩余重力异常
[1] Kim S S, Wessel P. New global seamount census from altimetry-derived gravity data[J]. Geophysical Journal International, 2011,186(2):615-631.
[2] 赵俐红. 中西太平洋富钴结壳生长海山的构造成因研究[D]. 青岛:中国科学院研究生院(海洋研究所), 2005.
[2] Zhao L H. Study on the formation of seamounts distributed by cobalt-rich crust in the central-west Pacific[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2005.
[3] Hein J R, Spinardi F, Okamoto N, et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions[J]. Ore Geology Reviews, 2015,68(1):97-116.
[4] Wedgeworth B, Kellogg J. A 3-D Gravity-tectonic study of Ita Mai Tai Guyot: An uncompensated seamount in the East Mariana Basin[J]. Geophysical Monograph Series, 1987,43:73-84.
[5] Utkin V P. Role of strike-slip faulting of the oceanic Lithosphere in the formation of Pacific Volcanic Belts[J]. Doklady Earth Sciences, 2006,409(1):692-696.
[6] Lee T G, Lee K, Hein J R, et al. Geophysical investigation of seamounts near the Ogasawara Fracture Zone, western Pacific[J]. Earth Planets & Space, 2009,61(3):319-331.
[7] 杨永, 何高文, 刘方兰, 等. 嘉偕平顶山群重磁异常及其构造和沉积特征[J]. 海洋地质与第四纪地质, 2016,36(1):107-113.
[7] Yang Y, He G W, Liu F L, et al. Gravityand magnetic anomalies of jiaxie guyots and their structural and sedimentary characteristics[J]. Marine Geology & Quaternary Geology, 2016,36(1):107-113.
[8] Carbó A, Muñoz Martín A, Llanes P, et al. Gravity analysis offshore the Canary Islands from a systematic survey[J]. Marine Geophysical Researches, 2003,24(1-2):113-127.
doi: 10.1007/s11001-004-1336-2
[9] Catalán M, Martín Davila J. A magnetic anomaly study offshore the Canary Archipelago[J]. Marine Geophysical Researches, 2003,24(1-2):129-148.
[10] 韦振权, 邓希光, 朱克超, 等. 西太平洋采薇海山群基岩特征[J]. 海洋地质前沿, 2017,33(12):1-6.
[10] Wei Z Q, Deng X G, Zhu K C, et al. Characteristic of substrate rocks of caiwei Seamounts in the west Pacific Ocean[J]. Marine Geology Frontier, 2017,33(12):1-6.
[11] 赵俐红, 杨明明, 张超, 等. 麦哲伦海山区重力特征及深部特征[J]. 中国科技信息, 2016(7):31-32.
[11] Zhao L H, Yang M M, Zhang C, et al. Gravity and deep features of Magellan seamount[J]. China Science and Technology Information, 2016(7):31-32.
[12] 罗新刚, 王万银, 张功成, 等. 基于重力资料的南海及邻区断裂分布特征研究[J]. 地球物理学报, 2018,61(10):4255-4268.
[12] Luo X G, Wang W Y, Zhang G C, et al. Study on distribution features of faults based on gravity data in the South China Sea and its adjacent areas[J]. Chinese Journal of Geophysics, 2018,61(10):4255-4268.
[13] Wang W Y, Pan Y, Qiu Z Y. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics, 2009,6(3):226-233.
[14] 纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法研究[J]. 地球物理学报, 2015,58(3):1042-1058.
[14] Ji X L, Wang W Y, Qiu Z Y. The research to the minimum curvature technique for potential field data separation[J]. Chinese J. Geophys. (in Chinese), 2015,58(3):1042-1058.
[15] 刘金兰. 重磁位场新技术与山西断陷盆地构造识别划分研究[D]. 西安:长安大学, 2008.
[15] Liu J L. Development new technologies for potential field processing and research on the tectonic recognition & division of shanxi fault basin[D]. Xi'an: Chang’an University, 2008.
[16] Hansen S. Seismic velocity and attenuation structure of the east rift zone and south flank of Kilauea Volcano, Hawaii[J]. Bulletin of the Seismological Society of America, 2004,94(4):1430-1440.
[17] Lee T G, Hein J R, Lee K, et al. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3~7 kHz) subbottom profiles[J]. Deep-Sea Research I, 2005,52:1932-195.
[18] Vogt P R, Smoot N C. The Geisha Guyots: Multibeam bathymetry and morphometric interpretation[J]. Journal of Geophysical Research, 1984,89(B13):11085-11107.
[19] Smoot N C. The Marcus-Wake seamounts and guyots as paleofracture indicators and their relation to the Dutton Ridge[J]. Marine Geology, 1989,88(1):117-131.
[20] Mitchell N C. Transition from circular to stellate forms of submarine volcanoes[J]. Journal of Geophysical Research, 2001,106(B2):1987-2003.
[21] 方爱民, 李继亮, 侯泉林. 浊流及相关重力流沉积研究综述[J]. 地质论评, 1998,44(3):270-280.
[21] Fang A M, Li J L, Hou Q L. Sedimentation of turbidity current sand relative gravity flows: a review[J]. Geological Review, 1998,44(3):270-280.
[22] Moore J G, Clague D A, Holcomb R T, et al. Prodigious submarine landslides on the Hawaiian Ridge[J]. Journal of Geophysical Research Solid Earth, 1989,94(B12):17465-17484.
[23] Moore J G, Normark W R, Holcomb R T. Giant Hawaiian underwater landslides[J]. Science, 1994,264(46):46-47.
[24] Elsworth D, Voight B. Dike intrusion as a trigger for large earthquakes and the failure of volcano flanks[J]. Journal of Geophysical Research, 1995,100(B4):6005-6024.
[25] Masson D G, Watts A B, Gee M J R, et al. Slope failures on the flanks of the western Canary Islands[J]. Earth-Science Reviews, 2002,57(1-2):1-35.
[26] Peter W L, William R.N, James G M, et al. The giant submarine Alika Debris Slide, Mauna Loa, Hawaii[J]. Journal of Geophysical Research Atmospheres, 1988,93(B5):4279-4299.
[27] Vidal N, Merle O. Reactivation of basement faults beneath volcanoes: A new model of flank collapse[J]. Journal of Volcanology and Geothermal Research, 2000,99(1):9-26.
[28] Koppers A A P, Staudigel H, Wijbrans J R, et al. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion[J]. Earth & Planetary Science Letters, 1998,163(1-4):53-68.
[29] 章家保, 金翔龙, 高金耀, 等. 断裂和白垩纪岩浆活动对中西太平洋海山区海山形成的影响[J]. 海洋地质与第四纪地质, 2006,26(1):67-74.
[29] Zhang J B, Jin X L, Gao J Y, et al. Influence on the seamounts’ formation in MPM and WPSP from fractures and cretaceous magma’ s activities[J]. Marine Geology & Quaternary Geology, 2006,26(1):67-74.
[30] 张国祯, 张子健. 西太平洋海底平顶山研究[J]. 海洋地质与第四纪地质, 2001,21(1):19-24.
[30] Zhang G Z, Zhang Z J. Investigation of guyots in the Western Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2001,21(1):19-24.
[31] 赵俐红, 金翔龙, 高金耀. 麦哲伦海山链漂移史及可能的来源[J]. 海洋学报, 2010,32(3):60-66.
[31] Zhao L H, Jin X L, Gao J Y, et al. There search on the drifting history and possible origin of the Magellan seamount trail[J]. Acta Oceanologica Sinica, 2010,32(3):60-66.
[32] Staudigel H, Clague D. The Geological history of deep-sea volcanoes[J]. Oceanography, 2010,23(1):58-71.
doi: 10.5670/oceanog
[33] 梁劲, 沙志彬, 陈弘. 西太平洋MF海山磁异常特征及其地质解释[J]. 南海地质研究, 2003(1):74-81.
[33] Liang J, Sha Z B, Chen H. The magnetism anomaly and its geological significanee of MF seam ount in west pacific[J]. Geological South China Sea, 2003(00):74-81.
[34] Prokof’ev V Y, Avdonin V V, Mel’nikov M E. Physicochemical parameters of the crystallization of plagioclases in basaltic rocks from guyots of the Magellan Seamounts (Pacific Ocean)[J]. 2008,421(2):995-999.
[35] Lee T G, Lee S M, Moon J W, et al. Paleomagnetic investigation of seamounts in the vicinity of Ogasawara Fracture Zone northwest of the Marshall Islands, western Pacific[J]. Earth Planets & Space, 2003,55(6):355-360.
[36] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources[J]. Ore Geology Reviews, 2013,51(2):1-14.
[1] 邢锦程, 袁炳强, 张春灌, 冯旭亮, 段瑞锋, 薛健, 贾洪杨, 李想. 特立尼达盆地重力场特征及油气远景[J]. 物探与化探, 2021, 45(6): 1606-1616.
[2] 陈青, 孙帅, 丁成艺, 黄小宇, 陈浩, 申鹏, 罗港, 魏耀聪. iTilt-Euler法在重力数据处理及断裂解释中的应用[J]. 物探与化探, 2021, 45(6): 1578-1587.
[3] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[4] 刘海宁, 韩宏伟, 魏文, 张云银, 赵景蒲. 高密度三维区沙四段灰岩有利储层地震预测[J]. 物探与化探, 2021, 45(5): 1281-1287.
[5] 虎新军, 陈晓晶, 李宁生, 仵阳, 陈涛涛. 银川盆地东缘黄河断裂展布特征新认识[J]. 物探与化探, 2021, 45(4): 913-922.
[6] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[7] 游军, 张小明, 罗乾周, 史朝洋, 杨运军, 陈剑祥, 袁攀. 略阳白雀寺杂岩体以西隐伏深大断裂的推断依据及其意义[J]. 物探与化探, 2021, 45(3): 645-652.
[8] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
[9] 王薇, 林松, 程邈, 金聪, 周红伟. 安丘—莒县断裂莒县盆地段浅层地震探测及意义[J]. 物探与化探, 2021, 45(3): 609-615.
[10] 吴教兵, 黎峻良, 江兰, 陆俊宏, 潘黎黎, 韦王秋. 综合物探方法在广西罗城县活动断裂鉴定中的应用[J]. 物探与化探, 2021, 45(2): 346-354.
[11] 孟军海, 马龙, 王金海, 赵丽萍, 王丽君, 付强, 童明慧. 重力数据在德令哈地区区域性综合解释中的开发应用研究[J]. 物探与化探, 2021, 45(2): 369-378.
[12] 张晶玉, 范廷恩, 王海峰, 张显文, 杜昕. 曲率属性在河流相储层内部不连续性检测中的应用[J]. 物探与化探, 2021, 45(2): 450-457.
[13] 高武平, 闫成国, 张文朋, 王志胜. 电阻率层析成像在沉积区隐伏断层探测中的应用[J]. 物探与化探, 2020, 44(6): 1352-1360.
[14] 杨利普, 徐志萍, 徐顺强, 刘明军, 姜磊, 熊伟, 贺为民. 薄壁断裂峪河口至方庄段电性结构特征[J]. 物探与化探, 2020, 44(6): 1301-1305.
[15] 王洪军, 熊玉新. 广域电磁法在胶西北金矿集中区深部探测中的应用研究[J]. 物探与化探, 2020, 44(5): 1039-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com