Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (5): 1054-1063    DOI: 10.11720/wtyht.2019.0044
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于改进迭代去噪法的多震源地震数据分离
郭建宏1,2, 成景旺3(), 陈芷若2, 杨兵1,2, 严皓4
1. 长江大学 地球物理与石油资源学院,湖北 武汉 430100
2. 长江大学 油气资源与勘探技术教育部重点实验室,湖北 武汉 430100
3. 太原理工大学 矿业工程学院,山西 太原 030024
4. 中海石油有限公司天津分公司,天津 300452
Seismic data separation of simultaneous source based on an improved iterative denoising method
Jian-Hong GUO1,2, Jing-Wang CHENG3(), Zhi-Ruo CHEN2, Bing YANG1,2, Hao YAN4
1. Geophysics and Oil Resource Institute,Yangtze University,Wuhan 430100,China
2. Key Laboratory of Exploration Technologies for Oil and Gas Resources,Ministry of Education,Yangtze University,Wuhan 430100,China
3. College of Mining Engineering,Taiyuan University of Technology,Taiyuan 030024,China
4. Tianjin Branch of CNOOC Ltd.,Tianjin 300452,China
全文: PDF(10090 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

多震源激发技术与单震源采集方法相比,极大地提高了地震勘探效率,其混合数据的分离是影响成像的关键因素。将多震源混合数据的伪分离记录从共炮道集分选到其他道集时,次震源地震信号表现为随机噪声,可通过迭代去噪的方法进行分离。本文对传统的迭代预测去噪法进行改进,在每次去噪前加入上一次分离结果来增加迭代去噪的稳定性,并结合多方向矢量中值滤波来进行随机噪声的去除。通过理论模型的多震源混合数据分离试验,表明本文提出的方法具有更好的分离效果,且更为强健,在不同滤波参数下均能保持一定的稳定性。将该方法应用于实际海洋混合地震数据的分离,同样能得到较好的分离结果,具有实际应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭建宏
成景旺
陈芷若
杨兵
严皓
关键词 多震源激发混合数据分离迭代预测相减法多方向矢量中值滤波    
Abstract

Compared with single source acquisition method,simultaneous source acquisition technology can greatly increase field acquisition efficiency,and the separation of blended data is the key.When pseudo-segregated records of mixed simultaneous source data are sorted from common gathers to other gathers,the seismic signals of secondary sources show random noise,which can be separated by iterative denoising method.In this paper,the traditional iterative prediction denoising method is improved by adding the last separation result before each denoising to increase the stability of the iterative denoising,and combining with Multidirectional Vector Median Filtering to remove random noise.Through the separation test of simultaneous source mixed data of theoretical model,it is shown that the proposed method has better separation effect and is more robust,and can be operated under the condition of different parameters and maintain certain stability.Finally,the method is applied to the separation of Simultaneous Source Marine Line data,and a better separation result can be obtained.The method has practical application value.

Key wordssimultaneous source acquisition    separation of the blended data    iterative prediction noise power subtraction technique    multidirectional vector median filter
收稿日期: 2019-01-18      出版日期: 2019-10-25
:  P631.4  
基金资助:国家自然科学基金(41504102);湖北高校省级大学生创新训练项目(201810489075)
通讯作者: 成景旺
作者简介: 郭建宏(1997-),男,在读研究生。Email: 87942024@qq.com
引用本文:   
郭建宏, 成景旺, 陈芷若, 杨兵, 严皓. 基于改进迭代去噪法的多震源地震数据分离[J]. 物探与化探, 2019, 43(5): 1054-1063.
Jian-Hong GUO, Jing-Wang CHENG, Zhi-Ruo CHEN, Bing YANG, Hao YAN. Seismic data separation of simultaneous source based on an improved iterative denoising method. Geophysical and Geochemical Exploration, 2019, 43(5): 1054-1063.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0044      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I5/1054
Fig.1  共偏移距道集对比
a—传统单震源采集;b—多震源混合激发采集
Fig.2  混合激发方式及激发时间
a—混合方式;b—多震源随机激发时间
Fig.3  共炮集地震记录
a—单震源第50炮;b—单震源第110炮;c—第50个混合炮
Fig.4  共检波点道集去噪结果对比
a—迭代预测相减法(主震源);b—本文方法(主震源);c—迭代预测相减法(次震源);d—本文方法(次震源)
Fig.5  信噪比迭代曲线
a—分离后主震源信噪比对比;b—分离后次震源信噪比对比
滤波时窗
长度
地震
道数
中值滤波矢量
方向范围
迭代二十次信噪比/dB
迭代预测相减 本文改进方法
主震源 次震源 主震源 次震源
第一组 5 5 5 14.0125 12.2117 15.9059 15.7402
第二组 7 7 10 13.0922 10.9931 15.7113 15.2896
第三组 9 7 15 11.9421 10.1104 14.4596 14.2067
Table 1  不同滤波参数的去噪结果对比
Fig.6  混合激发分离效果对比
a—主震源信噪比对比;b—次震源信噪比对比
Fig.7  第50混合炮的分离结果
a—本文方法分离后的第50单炮记录;b—本文方法分离后的第110单炮记录;c—常规迭代法分离后的第50单炮记录;d—常规迭代法分离后的第110单炮记录
Fig.8  海上多震源混合采集数据
a—海上单震源激发实际数据;b—混合后的多震源数据(前3000个时窗)
Fig.9  第32个共偏移距道集及去噪结果
a—左源共偏移距道集;b—图a去噪结果;c—右源共偏移距道集;d—图c去噪结果
Fig.10  实际混合炮的分离记录
a—第32混合炮分离后的主震源;b—第32混合炮分离后的次震源
Fig.11  实际混合炮的分离效果对比
a—海上单震源激发部分数据;b—第32混合炮分离后部分数据
[1] Lynn W, Doyle M, Larner K , et al. Experimental investigation of interference from other seismic crews[J]. Geophysics, 1987,52(11):1501-1524.
[2] Beasley C J, Chambers R E, Jiang Z. A new look at simultaneous sources [C]//Eage Conference & Exhibition, 1998.
[3] Bagaini C. Overview of simultaneous Vibroseis acquisition methods [C]//SEG Technical Program Expanded Abstracts, 2006,25(1):70-74.
[4] Ikelle L T. Coding and decoding:seismic data modeling,acquisition and processing [C]//SEG Technical Program Expanded Abstracts, 2007,26(1):66-70.
[5] Berkhout A J, Blacquière G, Verschuur D J . Changing the mindset in seismic data acquisition[J]. The Leading Edge, 2008,27(7):924-938.
[6] Vaage S T . Method and system for acquiring marine seismic data using multiple seismic sources[P].U.S. Patent. 6906981B2, 2002.
[7] Hampson G, Stefani J, Herkenhoff F . Acquisition using simultaneous Sources[J]. The Leading Edge, 2008,27(7):918-923.
[8] Dragoset W H. A 3D Wide-azimuth Field Test with Simultaneous Marine Sources [C]//71 st EAGE Conference & Exhibition Incorporating SPE EUROPEC , 2009.
[9] Akerberg P, Hampson G, Rickett J, et al. Simultaneous source separation by sparse Radon transform [C]//SEG Technical Program Expanded Abstracts, 2008,27(1):2801-2805.
[10] Moore I. Simultaneous sources-processing and applications [C]//72 nd EAGE Conference & Exhibition incorporating SPE EUROPEC , 2010.
[11] Abma R, Manning T, Tanis M, et al. High quality separation of simultaneous sources by sparse inversion [C]//72 nd EAGE Conference & Exhibition incorporating SPE EUROPEC , 2010.
[12] Chen Y, Fomel S, Hu J . Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization[J]. Geophysics, 2014,79(5):179-189.
[13] Moore I, Dragoset B, Ommundsen T, et al. Simultaneous source separation using dithered sources [C]//SEG Technical Program Expanded Abstracts, 2008,27(1):2806-2810.
[14] Huo S, Luo Y, Kelamis P G . Simultaneous sources separation via multidirectional vector-median filtering[J]. Geophysics, 2009,77(4):123-131.
[15] Mahdad A, Doulgeris P, Blacquiere G . Separation of blended data by iterative estimation and subtraction of blended interference noise[J]. Geophysics, 2011,76(3):9-17.
[16] 韩立国, 谭尘青, 吕庆田 , 等. 基于迭代去噪的多源地震混合采集数据分离[N]. 地球物理学报, 2013,56(7):2402-2412.
[16] Han L G, Tan C Q, Lyu Q T , et al. Separation of multi-source blended seismic acquisition data by iterative denoising[J]. Chinese Journal of Geophysics, 2013,56(7):2402-2412.
[17] 周丽, 庄众, 成景旺 , 等. 利用自适应迭代多级中值滤波法分离海上多震源混合波场[J]. 石油地球物理勘探, 2016,51(3):434-443.
doi: 10.13810/j.cnki.issn.1000-7210.2016.03.003
[17] Zhou L, Zhuang Z, Cheng J W , et al. Marine multi-source blended wavefields separation based on a adaptive iterative multilevel median filtering method[J]. Oil Geophysical Prospecting, 2016,51(3):434-443.
[18] Wang H C, Chen S C, Zhang B , et al. Separation method for multi-source blended seismic data[J]. Applied Geophysics, 2013,10(3):251-264.
[19] Liu Y, Luo Y, Wang Y. Vector median filter and its applications in geophysics [C]//79 th Annual International Meeting,SEG,Expanded Abstracts , 2009,28(1):3342-3346.
[20] PGS. Simultaneous Source Marine Line[DB/OL]., 2017.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com