Please wait a minute...
E-mail Alert Rss
 
物探与化探  2016, Vol. 40 Issue (5): 961-967    DOI: 10.11720/wtyht.2016.5.19
  方法技术研究 本期目录 | 过刊浏览 | 高级检索 |
基于L-BFGS理论求解复程函方程的地震波复走时计算方法
黄兴国1,2, 孙建国1,2, 孙章庆1,2, 王乾龙1,2
1. 吉林大学 地球探测科学与技术学院, 吉林 长春 130026;
2. 国土资源部 应用地球物理综合解释理论开放实验室—波动理论与成像技术实验室, 吉林 长春 130026
A fast algorithm for computing complex traveltime based on L-BFGS method
HUANG Xing-Guo1,2, SUN Jian-Guo1,2, SUN Zhang-Qing1,2, WANG Qian-Long1,2
1. College for Geoexploration Science and Technology, Jilin University, Changchun 130026;
2. Laboratory for Integrated Geophysical Interpretation Theory of the Ministry for Land and Resources of China—Laboratory for Wave Theory and Imaging Technology, Changchun 130026
全文: PDF(3682 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地震波复走时在处理几何射线理论面临的焦散问题有着重要作用。为了获得一种精度高且更为高效的复走时计算方法,将L-BFGS最优化理论引入分离的复程函方程中用于求取等效虚慢度,直接利用复走时实部、虚部正交的条件为目标函数,减少了梯度矩阵的一次乘积,利用计算梯度的正演部分作为复走时计算部分,得到了一种求解复程函方程的L-BFGS快速推进复走时计算方法。通过对解析法、动力学射线追踪法、高斯牛顿—共轭梯度快速推进法、L-BFGS快速推进法计算结果的精度和效率分析,表明L-BFGS快速推进法在精度和效率上均具有一定的优越性,也能适应在实际应用中的大规模计算需求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Complex traveltime of seismic wave plays an important role in dealing with caustics with which geometric ray theory faces.To obtain a higher accuracy and a more efficient method for calculating the complex traveltime,the authors introduce the L-BFGS optimization method to calculate the imaginary slowness.In addition,orthogonal condition of the real part and imaginary part of complex traveltime are taken as the objective function,and then a new L-BFGS-FMM method is obtained for computing complex traveltime.The numerical examples demonstrate the effectiveness of L-BFGS-FMM used in this paper.An analysis of accuracy and efficiency of the results obtained by using the analytical method,dynamic ray tracing method,Gauss-Newton-conjugate gradient method and L-BFGS-FMM method shows that the L-BFGS-FMM method introduced in this paper is superior to all the other methods,and hence the method introduced in this paper can meet the large-scale computing requirement in practical applications.

收稿日期: 2016-02-26      出版日期: 2016-10-10
:  P631.4  
基金资助:

国家自然科学基金项目(41274120、41404085)

通讯作者: 孙建国(1956-),男,博士,教授,主要从事地下波动理论与成像技术、地震资料处理方法等方面的教学和研究工作.E-mail:sun_jg@jlu.edu.cn
作者简介: 黄兴国(1990-),男,硕士研究生,主要从事地震波传播理论与成像技术方面的研究工作.E-mail:huangxingguo111@163.com
引用本文:   
黄兴国, 孙建国, 孙章庆, 王乾龙. 基于L-BFGS理论求解复程函方程的地震波复走时计算方法[J]. 物探与化探, 2016, 40(5): 961-967.
HUANG Xing-Guo, SUN Jian-Guo, SUN Zhang-Qing, WANG Qian-Long. A fast algorithm for computing complex traveltime based on L-BFGS method. Geophysical and Geochemical Exploration, 2016, 40(5): 961-967.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2016.5.19      或      https://www.wutanyuhuatan.com/CN/Y2016/V40/I5/961

[1] Felsen L B.Evanescent waves[J].Journal of the Optical Society of America,1976,66(8):751-760.
[2] ?ervený V,Popov M MI.Pšen?ík I.Computation of wave fields in inhomogeneous media[J].Geophysics,1982,70(1):109-128.
[3] Popov M M.A new method of computation of wave fields using Gaussian beams[J].Wave Motion,1982,4(1):85-97.
[4] Hill N R.Gaussian beam migration[J].Geophysics,1990,55(11):1416-1428.
[5] Hill N R.Prestack Gaussian beam depth migration[J].Geophysics,2001,66(4):1240-1250.
[6] Magnanini R,Talenti G.On complex-valued solutions to a 2D Eikonal equation. Part One:qualitative properties[J]. Contemporary Mathematics,1999,283:203-229.
[7] Li S,Fomel S,Vladimirsky A.Improving wave-equation fidelity of Gaussian beams by solving the complex eikonal equation[C]//San Antonio:Expanded Abstracts of 81stSEG Annual Internet Meeting,2011:3829-3834.
[8] Sethian J A,Popovici A M.3-D traveltime computation using the fast marching method[J].Geophysics,1999,64(2):516-523.
[9] Huang X,Sun J,Sun Z.Local algorithm for computing complex travel time based on the complex eikonal equation[J]. Physical Review E,2016,93(4):043307(1)-043307(10).
[10] Perry A.A class of conjugate gradient algorithms with a two-step variable-metric memory[J].Discussion Papers from Northwestern University,Center for Mathematical Studies in Economics and Management Science,1977,269.
[11] Nocedal J.Updating quasi-Newton matrices with limited storage[J].Mathematics of computation,1980,35(151):773-782.
[12] Liu D C,Nocedal J.On the limited memory BFGS method for large scale optimization[J]. Mathematical programming,1989,45:503-528.
[13] Bleistein N.Mathematical methods for wave phenomena[M].Orlando:Academic Press,1984.
[14] Magnanini R,Talenti G.On complex-valued solutions to a two-dimensional eikonal equation. Ⅱ. Existence theorems[J].SIAM journal on mathematical analysis,2003,34(4):805-835.
[15] Schubert L K.Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian[J].Mathematics of Computation,1970,24(109):27-30.
[16] Deuflhard P.A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting[J].Numerische Mathematik,1974,22(4):289-315.
[17] Dennis,Jr J E,Moré J J.Quasi-Newton methods,motivation and theory[J].SIAM review,1977,19(1):46-89.
[18] Nocedal J,Wright S.Numerical optimization[M].New York:Springer Science & Business Media,2006.
[19] Wu R S.Gaussian beams,complex rays,and the analytic extension of the Green's function in smoothly inhomogeneous media[J]. Geophysical Journal International,1985,83(1):93-110.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com