Please wait a minute...
E-mail Alert Rss
 
物探与化探  2015, Vol. 39 Issue (3): 456-465    DOI: 10.11720/wtyht.2015.3.04
  综述 本期目录 | 过刊浏览 | 高级检索 |
地震波衰减及补偿方法
李金丽1, 李振春1, 管路平2, 邓文志1, 孙小东1
1. 中国石油大学(华东) 地震波传播与成像实验室, 山东 青岛 266580;
2. 中国石化石油勘探开发研究院 南京石油物探研究所, 江苏 南京 210014
The method of seismic attenuation and energy compensation
LI Jin-Li1, LI Zhen-Chun1, GUAN Lu-Ping2, DENG Wen-Zhi1, SUN Xiao-Dong1
1. SWPI, China University of Petroleum (East China), Qingdao 266580, China;
2. Institute of Geophysical Prospecting, SINOPEC Research Institute of Petroleum Exploration and Development, Nanjing 210014, China
全文: PDF(775 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地震波在地下介质中传播时,由于地下介质的吸收衰减作用,地震波的部分弹性能量不可逆转的转化为热能而发生耗散,使得地震波的能量发生衰减,相位产生畸变,降低了地震资料的分辨率和信噪比。为了实现对地震波的吸收衰减进行补偿,国内外许多学者在这方面做了大量的研究工作。笔者简单介绍了地震波的衰减机制和影响地震波衰减的主要因素,重点概括了各种地震波衰减补偿的研究方法,如反Q滤波方法、时频分析方法和反Q偏移方法,分析了各种补偿方法的优缺点。最后用黏声波逆时偏移方法对地震波衰减进行了补偿,并预测了地震波衰减补偿研究的发展趋势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

The energy in seismic waves will be absorbed when the waves travel in the earth,because the medium in the earth is viscoelastic.There are many kinds of energy absorption,such as geometric spreading,intrinsic attenuation, transmission losses,and energy conversion.Such energy absorptions will decrease the signal-to-noise ratio and the resolution of seismic data.In order to realize the energy compensation,many scholars both in China and abroad have tried their best to do a lot of work. In this paper,the seismic attenuation mechanism and the main factors affecting the seismic wave absorption were reviewed.Several kinds of methods of energy compensation for seismic absorption attenuation including inverse Q filtering,time-frequency analysis and inverse Q migration were emphasized.An analysis shows that these methods have their own advantages and disadvantages.The authors implement the viscoacoustic wave equation for the forward and backward wave propagation to correct the attenuation effects in reverse time migration.A numerical test demonstrates that the attenuation effects in reverse time migration can be properly compensated and the attenuation compensation can enhance the high-wavenumber components in complex geological structures.Finally,the development trend of seismic wave energy compensation is forecasted.

收稿日期: 2014-08-20      出版日期: 2015-06-10
:  P631.4  
基金资助:

国家自然科学基金项目(41204086);国家科技重大专项项目(2011ZX05006-002)

作者简介: 李金丽(1989-),女,汉族,内蒙古赤峰人,现为中国石油大学(华东)在读研究生,主要从事地震波衰减补偿和偏移成像方面的工作。
引用本文:   
李金丽, 李振春, 管路平, 邓文志, 孙小东. 地震波衰减及补偿方法[J]. 物探与化探, 2015, 39(3): 456-465.
LI Jin-Li, LI Zhen-Chun, GUAN Lu-Ping, DENG Wen-Zhi, SUN Xiao-Dong. The method of seismic attenuation and energy compensation. Geophysical and Geochemical Exploration, 2015, 39(3): 456-465.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2015.3.04      或      https://www.wutanyuhuatan.com/CN/Y2015/V39/I3/456

[1] 李庆忠.走上精确的勘探道路[M].北京:石油工业出版社,1994.

[2] Emmerich H,Korn M.Incorporation of attenuation into time-domain computations of seismic wave fields[J].Geophysics,1987,52(9):1252-1264.

[3] 李振春,王清振.地震波衰减机理及能量补偿方法综述[J].地球物理学进展,2007,22(4):1147-1152.

[4] Varela C L,Rosa A L R,Ulrych T J.Modeling of attenuation and dispersion[J].Geophysics,1993,58:1167-1173.

[5] Kjartansson E.Constant Q-wave propagation and attenuation[J].Geophys. Res.,1979,84:4737-4748.

[6] Futterman W I.Dispersion body waves[J].Geophysics,1962,2:405-417.

[7] Carcione J M,Kosloff D,Kosloff R.Wave propagation simulation in a linear viscoelastic medium[J].Geophysical Journal,1998,95:597-611.

[8] Kjartansson E.Constant Q-wave propagation and attenuation[J].Journal of Geophysical Research,1979,84(B9):4738-4748.

[9] Hudson J A,Knopoff L.Predicting the overall propertise of composites with sall-scale inclusions or cracks[J].Pure Appl Geophys,1989,131:551-576.

[10] 尹军杰,刘学伟,李文慧.地震波散射理论及应用研究综述[J].地球物理学进展,2005,20(1):123-134.

[11] Murphy W F.Effect of partial water saturation on attenuation in Massill on sandstone and porous glass[J].J Acoust Soc Am,1982,71:1458-1468.

[12] Dvorkin J,Nur A.Dynamic poroelasticity:A unified model with the squirt and the Biot mechanisns[J].Geophysics,1993,58:524-533.

[13] Para J O.The transeversely isotropic poroelastic wave equation including the Boit and the squirt mechanisms theory and application[J].Geophysics,1997,62:309-318.

[14] Para J O.Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy[J].Geophysics,2000,65:201-210.

[15] 杨宽德,杨顶辉,王书强.基于Boit-Squirt方程的波场模拟[J].地球物理学报,2002,45(6):853-862.

[16] 马绍军,刘洋.地震波衰减反演研究综述[J].地球物理学进展,2005,20(4):1047-1082.

[17] Zhang C J,Ulrych T J.Estimation of quality factors from CMP records[J].Geophysics,2002,67(5):1542-1547.

[18] Dasgupta R,Clark R A.Estimation of Q from surface seismic reflection data[J].Geophysics,1998,63:2120-2128.

[19] Tonn R.Comparison of seven methods for the computation of Q[J].Geophysics,1998,53(12):1520-1526.

[20] 陈传仁,周熙襄.小波谱白化方法提高地震资料的分辨率[J].石油地球物理勘探,2000,35(6):703-709.

[21] 卢文凯,丁文龙,张善文,等.基于信号子空间分解的三维地震资料高分辨率处理方法[J].地球物理学报,2005,48(4):896-901.

[22] lrving J D,Knight R.Removal of wavelet dispersion from ground-penetrating radar data[J].Geophysics,2003,68(3):960-970.

[23] 王正和,崔永福,向东.井控处理中的真振幅恢复与Q补偿方法与应用[J].物探与化探,2008,32(4):434-437.

[24] 王珊,于承业,王云专,等.稳定有效的反Q滤波方法[J].物探与化探,2009,33(6):696-699.

[25] 裴江云,何樵登.基于Kjartansson模型的反Q滤波[J].地球物理学进展,1994,9(1):90-100

[26] 高军,凌云,等.时频域球面发散和吸收补偿[J].石油地球物理勘探,1996,31(6):865-866.

[27] 裴江云,陈树民.近地表Q值求取及振幅补偿[J].地球物理学进展,2001,16(4):18-22.

[28] Bickel S H,Natarajan R R.Plane-wave Q deconvolution[J].Geophysics,1985,50(9):1246-1439.

[29] Zhang X W,Han L G,Zhang F J,et al,An inverse Q-filter algorithm based on stable wavefeild continuation[J].Applied Geophysicis,2007,4(4):263-270.

[30] Hargreaves N D,Calvert A J.Inverse Q-filtering by Fourier transform[J].Geophysics,1991,56(4):519-527.

[31] Hargreaves N D.Similarity and the inverse Q filter:some simple algorithms for inverse Q filtering[J].Geophysics,1992,57(7):944-947.

[32] Wang Y H.A stable and efficient approach of inverse Q Filterting[J].Geophysics,2002,67(2):657-664.

[33] Wang Y H.Inverse Q-filter for seismic resolution enhancement[J].Geophysics,2006,71(3):51-61.

[34] Wang Y H.Inverse Q-filter migration[J].Geophysics,2008,73(1):S1-S6.

[35] 王文闯,李合群.混合法Q吸收补偿[J].石油地球物理勘探,2012,47(2):244-248.

[36] Carlos L V.Modeling of attenuation and dispersion[J].Geophysics,1993,58(8):1167-1173.

[37] 张瑾,刘财,冯晅,等.波场延拓反Q滤波的正则化方法[J].世界地质,2013,32(1):123-129.

[38] 姚振兴,高星,李维新.用于深度域地震剖面衰减与频散补偿的反Q滤波方法[J].地球物理学报,2003,46(2):229-233.

[39] Yan H Y,Liu Y.Estimation of Q inverse Q filtering for prestack reflected PP and converted PS waves[J].Applied Geophysicis,2009,6(1):59-69.

[40] 黄飞,韩立国,张博,等.叠前PS波Q值提取与稳定高效的反Q滤波算法[J].世界地质,2012,31(1):178-186.

[41] 白桦,李鲲鹏.基于时频分析的地层吸收补偿[J].石油地球物理勘探,1999,34(6):642-648

[42] 李鲲鹏,李衍达,张学工.基于小波包分解的地层吸收补偿[J].地球物理学报,2000,43(4):542-549.

[43] 李鲲鹏,刘业新,李衍达.小波变换的过零点特性与地震勘探信号的信噪比和分辨[J].地球物理学报,1997,40(4):561-569.

[44] Braga L L S,Moraes F S.High-resolution gathers by inverse Q filitering in the wavelet domain[J].Geophysics,2013,78(2):53-61.

[45] Stockwell R G,Mansinha L,Lowe R P.Localization of the complex spectrum:the Spectrum[J].IEEE Transactions On signal processing,1996,44(4):998-1001.

[46] Mansinha L,Stockwell R G,Lowe R P.Pattern analysis with two dimensional spectral localization:Application of two-dimensional S transform[J].Physical,1997,239(3):286-295.

[47] McFadden P D,Cook J G,Forster L M.Decomposition of gear vibration signals by generalized S-transform[J].Mechanical Systems and Signal Process,1999,13(4):691-707.

[48] Pinnergar C R,Mansinha L.The S-transform with windows of arbitrary and varying shape[J].Geophysics,2003,68(1):381-385.

[49] 高静怀,陈文超,李幼铭,等.广义S变换与薄互层地震响应[J].地球物理学报,2003,46(4):526-532.

[50] 张固澜,熊晓君,容娇军,等.基于改进的广义S变换的地层吸收衰减补偿[J].石油地球物理勘,2010,45(4):512-515.

[51] 张固澜.基于改进的广义S变换的低频吸收衰减梯度检测[J].地球物理学报,2011,54(9):2047-2411.

[52] 孙佳琳.基于Curvelet变换的地层吸收补偿方法研究[D].长春:吉林大学,2013.

[53] Mittet R,Sollie R,Hokstad K.Prestack depth migration with compensation for absorption and dispersipon[J].Geophysics,1995,60(5):1485-1494.

[54] Mittet R.A simple design procedure for depth extrapolation operators that compensate for absorption and dispersion[J].Geophysics,2007,72(2):S105-S112.

[55] 徐升,Lambare G.复杂介质下保真振幅Kirchhoff深度偏移[J].地球物理学报,2006,49(5):1431-1444.

[56] Hanitzsch C.Comparsion of weights in prestack amplitude-preserving Kirchhoff depth migration[J].Geophysics,1997,62:1812-1816.

[57] 任浩然,王华忠,张立彬.沿射线路径的波动方程延拓吸收衰减与补偿方法[J].石油物探,2007,46(6):557-561.

[58] Xin Y,Birdus B,Sun J.3D tomographic amplitude inversion for compensating amplitude attenuation in the overburden[C]//Expanded Abstracts of 78th SEG Annual International Meeting,2008:3239-3243.

[59] Xie Y,Xin K,Sun J,et al.3D prestack depth migration with compensation for frequency dependent absorption and dispersion[C]//Expanded Abstracts of 79th SEG Annual International Meeting,2009:2919-2922.

[60] Cavalca M,Fletcher R,Riedel M.Q-compensation in complex media ray-based and wavefeild extrapolation approaches[C]//Expanded Abstracts of 84th SEG Annual International Meeting,2013:3831-3835.

[61] Gazdag J.Wave equation migration with the phase-shift method[J].Geophysics,1978,43(7):1342-1351.

[62] 张宇.振幅保真的单程波方程偏移理论[J].地球物理学报,2006,49(5):1410-1430.

[63] 刘定进,印兴耀.傅里叶有限差分保幅叠前深度偏移方法[J].地球物理学报,2007,50(1):268-276.

[64] 吕彬,王西文,李振春,等.基于保真振幅单程波方程的叠前AVP成像方法[J].地球物理学报,2009,52(8):2119-2127.

[65] ZhangY,Bleistein S N,Zhang G.True-amplitude angle domain common image gathers from one-way wave equation migrations[J].Geophysics,2006,72(1):S49-S58.

[66] 郭见乐.基于粘滞性声波方程的吸收补偿方法[J].物探与化探,2014,38(3):577-581.

[67] Dai N X,Gordon F W.Inverse Q migration[C]//Los Angeles:Expanded Abstracts of 64th SEG Annual International Meeting,1994.

[68] 杨午阳.粘弹性波动方程保幅偏移技术研究[D].北京:中国地质科学院,2004.

[69] Ye Y M,Li Z C.Preserved amplitude migration based on the one way wave equation in the angle domian[J]Applied Geophysics,2009,6(1):50-58.

[70] 张立彬,王华忠.稳定的反Q偏移方法研究[J]石油物探,2010,49(2):115-120.

[71] Valencinao A A,Chemingui N,Whitmore D,et al.Wave equation migration with attenuation and anistropy compensation[C]//Texas:Expanded Abstracts of 81st SEG Annual International Meeting,2011:232-236.

[72] 孙天真,谷玉田,张惠欣,等.基于粘声介质的反Q滤波叠前深度偏移方法研究[J]石油物探,2013,52(3):275-279.

[73] 李雪英,文慧俭,张桐,等.粘性介质叠前时间偏移方法研究[J]东北石油大学学报,2013,37(4):98-104.

[74] Sun R,McMechan G A,Lee C S,et al.Prestack scalar reverse-time depth migration of 3D elastic seismic data[J].Geophysics,2006,71(5):S199-S207.

[75] Feng D,George A.McMechan.Viscoelastic true-amplitude prestack reverse-time migration[J].Geophysics,2008,73(4):S143-S155.

[76] 李振春,郭振波,田坤.黏声介质最小平方逆时偏移[J].地球物理学报,2014,57(1):214-228.

[77] Bai J Y,Chen G Q,Yingst D,et al.Attenuation compensation in viscoacoustic reverse time migration[C]//Expanded Abstracts of 83rd SEG Annual International Meeting,2013:3825-3320.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com