Please wait a minute...
E-mail Alert Rss
 
物探与化探  2012, Vol. 36 Issue (5): 806-812    DOI: 10.11720/wtyht.2012.5.20
  方法技术研究 本期目录 | 过刊浏览 | 高级检索 |
Kelvin-Voigt黏弹性介质地震波场数值模拟与衰减特征
严红勇1,2, 刘洋1,2
1. 中国石油大学油气资源与探测国家重点实验室, 北京 102249;
2. 中国石油大学CNPC物探重点实验室, 北京 102249
NUMERICAL MODELING AND ATTENUATION CHARACTERISTICS OF SEISMIC WAVEFIELD IN KELVIN-VOIGT VISCOELASTIC MEDIA
YAN Hong-yong1,2, LIU Yang1,2
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China;
2. CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Beijing 102249, China
全文: PDF(1096 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 利用高阶交错网格有限差分模拟Kelvin-Voigt黏弹性介质中传播的地震波,同时将完全匹配层吸收边界条件引入到其边界处理中。数值模拟结果表明,完全匹配层吸收边界效果好,高阶有限差分能模拟得到的黏弹性介质波场精度较高。对模拟的黏弹性波场进行分析,表明介质的粘滞性使地震反射波的能量变弱,高频衰减明显,并比低频衰减得快,主频向低频方向移动,有效频带变窄,即降低了地震波的分辨率;并且反射转换波比反射纵波要衰减得快;而且还随着传播距离的增加,其峰值频率也逐渐降低。通过数值模拟分析具有不同的粘滞系数介质对地震波的吸收和衰减,结果表明随着粘滞系数的增大,地下介质对地震波的吸收衰减更明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:This paper uses finite difference algorithm of high-order staggered-grid simulate Kelvin-Voigt viscoelastic media of seismic waves and meanwhile introduces the perfectly matched layer(PML) absorbing boundary condition into its boundary. Numerical simulation demonstrates that the effect of this algorithm of absorbing boundary is very good and the wavefield of viscoelastic media obtained from high-order finite difference is relatively accurate. An analysis of viscoelastic wavefield simulation shows that the energy of the reflected wave becomes weaker, the attenuation of the high frequency wave is much more apparent in comparison with that of the low frequency wave, the main frequency becomes closer to the low frequency, and the effective bandwidth is narrower, which all induce low resolution of seismic wave according to the simulation of viscoelastic wavefields. Besides, the attenuation of PS-wave is much more rapid in comparison with that of PP-wave and the peak frequency becomes lower gradually with the increase of the propagating distance. It is also shown that the absorption and attenuation are more apparent with the increase of viscosity coefficient by analysis of the absorption and attenuation of seismic wave in different viscosity coefficient media.
收稿日期: 2011-02-18      出版日期: 2012-10-10
:  P631.4  
基金资助:国家"863"计划资助项目(2007AA06Z218)和国家油气重大专项课题(2011ZX05019-008)。
作者简介: 严红勇(1982-),男,中国石油大学(北京)在读博士研究生,主要从事地震波传播与成像、地震波吸收衰减及地震资料高分辨率处理等方面的研究工作,公开发表学术论文数篇。
引用本文:   
严红勇, 刘洋. Kelvin-Voigt黏弹性介质地震波场数值模拟与衰减特征[J]. 物探与化探, 2012, 36(5): 806-812.
YAN Hong-yong, LIU Yang. NUMERICAL MODELING AND ATTENUATION CHARACTERISTICS OF SEISMIC WAVEFIELD IN KELVIN-VOIGT VISCOELASTIC MEDIA. Geophysical and Geochemical Exploration, 2012, 36(5): 806-812.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2012.5.20      或      https://www.wutanyuhuatan.com/CN/Y2012/V36/I5/806
[1] 牛滨华, 孙春岩.半无限空间各向同性黏弹性介质与地震波传播[M].北京:地质出版社, 2007.
[2] 刘瑞珣, 张秉良, 张臣.描述岩石黏弹性固体性质的开尔文模型[J].地学前缘,2008,15(3):221-225.
[3] Carcione J M. Seismic modeling in viscoelastic media[J].Geophysics,1993,58(1):110-120.
[4] Robertsson J O A, Blanch J O,Symes W W.Viscoelastic finite-difference modeling[J].Geophysics, 1994, 59(9):1444-1456.
[5] Xu T,George A.Efficient 3-D viscoelastic modeling with application to near-surface land seismic data[J].Geophysics,1998,63(2):601-612.
[6] 刘财, 张智, 邵志刚,等.线性粘弹体中地震波场伪谱法模拟技术[J].地球物理学进展,2005,20(3):640-644.
[7] 单启铜, 乐友善.PML边界条件下二维黏弹性介质波场模拟[J].石油物探,2007,46(2):126-130.
[8] 裴正林.任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[J].石油地球物理勘探,2004,39(6):629-634.
[9] Kindelan M,Kamel A,Sguazzero P.On the construction and ef?ciency of staggered numerical differentiators for the wave equation[J].Geophysics,1990,55(1):107-110.
[10] Chew W, Liu Q.Perfectly matched layers for elastodynamics:A New absorbing boundary condition[J].Journal of Computational Acoustics,1996,4(4):341-359.
[11] Collino F,Tsogka C.Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J].Geophysics,2001,66(1):294-307.
[12] 刘洋, 魏修成.CMP道集反射波吸收方程和层Q值反演[J].石油天然气学报,2009,31(6):69-76.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com