Please wait a minute...
E-mail Alert Rss
 
物探与化探  2013, Vol. 37 Issue (3): 473-479    DOI: 10.11720/j.issn.1000-8918.2013.3.18
  方法技术研究 本期目录 | 过刊浏览 | 高级检索 |
最优化广义离散Shannon奇异核交错网格 褶积微分算子地震波场模拟
刘少林1, 李小凡1, 汪文帅1,2, 张美根1
1. 中国科学院 地质与地球物理研究所 地球深部重点实验室, 北京 100029;
2. 宁夏大学 数学与计算机学院, 宁夏 银川 750021
OPTIMAL GENERALIZED DISCRETE SHANNON SINGULAR KERNEL STAGGERED GRID CONVOLUTIONAL DIFFERENTIATOR FOR SEISMIC WAVE MODELING
LIU Shao-lin1, LI Xiao-fang1, WANG Wen-shuai1,2, ZHANG Mei-gen1
1. Key Laboratory of Earth Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, China
全文: PDF(810 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

笔者基于离散Shannon奇异核褶积微分算子(GDSCD)计算地震波速度应力方程的空间导数,推导了一阶GDSCD的具体形式,并提出了优化方法,即在频率域逼近平面波的真实导数,得到了不同半径和采样下限的最优窗函数系数,通过滤波响应分析算子精度,与多种数值方法对比以及模型测试表明,笔者构造的最优化GDSCD模拟地震波具有较高的计算效率和精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

This paper deals with the generalized discrete Shannon convolutional differentiator (GDSCD) for solving seismic velocity-stress equation. The first-order convolution differentiators are provided. An efficient method is proposed to optimize the coefficients of the convolution differentiator. A series of optimal coefficients are obtained for various operator lengths and sampling rates per shortest wave length. The operator accuracy is discussed through filter response. A comparison with various numerical methods and numerical experiments show that the new designed staggered grid convolution differentiator has high accuracy and efficiency for seismic wave modeling.

收稿日期: 2012-05-02      出版日期: 2013-06-10
:  P631.4  
基金资助:

国家自然科学基金项目(41174047、40874024)

作者简介: 刘少林(1988- ),男,湖北洪湖人,中国科学院地质与地球物理研究所在读博士研究生,主要从事地震波正反演研究,公开发表学术论文数篇。
引用本文:   
刘少林, 李小凡, 汪文帅, 张美根. 最优化广义离散Shannon奇异核交错网格 褶积微分算子地震波场模拟[J]. 物探与化探, 2013, 37(3): 473-479.
LIU Shao-lin, LI Xiao-fang, WANG Wen-shuai, ZHANG Mei-gen. OPTIMAL GENERALIZED DISCRETE SHANNON SINGULAR KERNEL STAGGERED GRID CONVOLUTIONAL DIFFERENTIATOR FOR SEISMIC WAVE MODELING. Geophysical and Geochemical Exploration, 2013, 37(3): 473-479.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/j.issn.1000-8918.2013.3.18      或      https://www.wutanyuhuatan.com/CN/Y2013/V37/I3/473

[1] 陈景波,秦孟兆.辛几何算法在射线追踪中的应用[J]. 数值计算与计算机应用,2000,21(4):254-265.

[2] Cerveny V.Seismic ray theory[M].Cambridge:Cambridge Univ Press,2001.

[3] Pao Y H,Varatharajulu V.Huygen's principle,radiation conditions,and intergral formulas for the scattering of elastic wave[J].J. Acoust. Soc. Am.,1976,59(6):1361-1371.

[4] Ursin B.Review of elastic and electromagnetic wave propagation in horizontally layered media[J].Geophysics,1983,44(8):1063-1081.

[5] Alterman Z,Karal F C.Propagation of elastic waves in layered media by finite-difference methods[J].Bull. Seism. Soc. Am.,1968,58(1): 367-398.

[6] 董良国, 马在田,曹景忠.一阶弹性波方程交错网格高阶差分法稳定性研究[J]. 地球物理学报,2000,43(6):856-864.

[7] 张美根,王妙月,李小凡,等.各向异性弹性波场的有限元数值模拟[J].地球物理学进展,2002,17(3):384-389.

[8] Gazdag J.Modeling of the acoustic wave equation with transform methods[J].Geophysics,1981,46(5):854-859.

[9] Komatitsch D.Spetctal and spectral-element methods for the 2D and 3D elastodynamics equations in heterogeneous media.Paris:Institute de Physique du Globe,1997.

[10] Wang Y B,Takenaka H,Furumura T.Modelling seismic wave propagation in a two-dimensional cylindrical whole-earth model using the pseudospectral method[J].Geophys. J. Int.,2001,145(3):689-708.

[11] Yang D H,Song G J,Lu M.Optimally accurate nearly analyti discrete scheme for wave-field simulation in 3D anisotropic media[J].Bull. Seism. Soc. Am.,2007,97(5):1557-569.

[12] Li X F,Zhu T,Zhang M G,et al.Seismic scalar wave equation with variable coefficient modeling by a new convolutional differentiator[J].Computer Physics Communications,2010,181:1850-858.

[13] Bayliss A,Jordan K E,Lemesurier B J.A fourth-order accurate finite-difference scheme for the computation of elastic wave[J].Bull. Seism. Soc. Am., 1986, 76(4): 1115-1132.

[14] 吴国忱,王华忠.波场模拟中的数值频散分析与校正策略. 地球物理学进展,2005,20(1): 58-65.

[15] Fornberg B.The Pseudospectral method:Comparison with finite differences for the elastic wave equation[J].Geophysics,1987,52(4):483-501.

[16] Fornberg B.The Pseudospectral method:Accurate representation of interfaces in elastic wave calculations[J].Geophysics,1988,53(5):625-637.

[17] Li X F,Wang W S,Lu M W,et al.Structure-preserving modeling of elastic wave:a symplectic discrete singular convolution differetiator method[J].Geophys. J. Int.,2012,188(3):1382-1392.

[18] 龙桂华,李小凡,张美根.错格傅立叶伪谱微分算子在波场模拟中的运用[J]. 地球物理学报,2009,52(1):193-199.

[19] 龙桂华,李小凡,江东辉. 基于交错网格Fourier伪谱微分矩阵算子的地震波场模拟GPU加速方案[J].地球物理学报,2010,53(13):2934-2971.

[20] Mora P.Elastic Fininte Difference with Convolutional Operatrors.California:Stanford Exploration Project Report,1986:277-290.

[21] Holberg O.Comutational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena[J].Geophysical Prospecting,1987,35(6):629-655.

[22] Zhou B,Greenhalgh S.Seismic scalar wave equation modeling by a convolutonal differentiator[J].Bull. Seism. Soc. Amer.,1992,82(1):289-303.

[23] 滕吉文,张中杰,杨顶辉,等.各向异性介质中褶积微分算子法三分量地震资料的数值仿真[J].石油物探,1995,34(3):15-22.

[24] 张中杰,滕吉文,杨顶辉. 声波与弹性波数值模拟中的褶积微分算子法[J].地震学报,1996,18(1):63-69.

[25] 戴志阳,孙建国,查显杰. 地震波场模拟中的褶积微分算子法[J].吉林大学学报:地球科学版,2005,35(4):520-524.

[26] 龙桂华,赵宇波,赵家福.地震波数值模拟中的最优Shannnon奇异核褶积微分算子[J].地震学报,2011,33(5):650-662.

[27] Wei G W.Quasi wavelets and quasi interpolating wavelets[J].Chemical Physics Letters,1998,296:215-222.

[28] Qian L W.On the Regularized whittaker-kotel'nikov Shannon shampling formula[J].Proceedings of the American Mathematical Society,2002,131(4):1169-1176.

[29] Feng B F,Wei G W.A comparison of the spectral and the discrete singular convolution schemes for the KdV-type equations[J].Journal of Computational and Applied Mathematics,2002,145(1):183-188.

[30] Li X F,Li Y Q,Zhang M G.Scalar seismic wave equation modeling by a multisymplectic discrete singular convolution differentiator method[J].Bull. Seis. Soc. Am., 2011,101(4):1710-1718.

[31] 龙桂华,李小凡,张美根.基于Shannon奇异核理论的褶积微分算子在地震波模拟中的应用[J].地球物理学报,2009,52(4):1014-1024.

[32] Jean Virieux.P-SV wave propagation in heterogeneous media Velocity-stress finite-difference method[J].Geophysics,1986,51(4): 889-901.

[33] 李一琼,李小凡,朱童.基于辛格式奇异核褶积微分算子的地震标量波场模拟[J].地球物理学报, 2011,54(7):1827-1834.

[34] Aki K,Richards P G.Quantitative seismology theory and methods.San Franciso:W H Freeman and Company,1980.

[35] Berenger J.A perfectly match layer for the absorption of electromagnetic waves[J].J Comput Phys,1994,114(2):185-220.

[36] 李信富,李小凡.地震波传播的褶积微分算子法数值模拟[J].地球科学:中国地质大学学报,2008,33(6):861-866.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com