|
|
Processing of the seismic Rayleigh wave data of coalfields based on the improved phase-shift method |
LI Xin-Xin1,2,3( ), LI Jiang4, LIU Jun4, SHEN Hong-Yan1,2 |
1. College of Earth Sciences & Engineering,Xi'an Shiyou University,Xi'an 710065,China 2. Shaanxi Key Laboratory of Petroleum Accumulation Geology,Xi'an Shiyou University,Xi'an 710065,China 3. SINOPEC Key Laboratory of Geophysics,Nanjing 211103,China 4. Xi'an Research Institute Co. Ltd.,China Coal Technology and Engineering Group Corp.,Xi'an 710077,China |
|
|
Abstract The phase-shift method is commonly used to extract the Rayleigh wave dispersion curves.However,in the case of a complex wave field,the dispersion spectra calculated using the phase-shift method have a low resolution of Rayleigh wave dispersion energy,reducing the accuracy of the dispersion curves.This study improved the phase-shift method by obtaining the power exponent of the amplitude of each point on the dispersion spectra to improve the convergence and focusing properties of the dispersion energy.The improved phase-shift method was used to process the simulated data of the theoretical stratigraphic model and the actual seismic data of a coalfield in a certain study area.The processing results were compared with the dispersion spectra generated using the conventional phase-shift method.Moreover,the inversion based on dispersion curves of the actual data was conducted to generate a two-dimensional (2D) S-wave velocity section of the study area.As revealed by the study results,the improved phase-shift method can enhance the signal-to-noise ratio of the Rayleigh wave signals in the frequency-velocity domain and improve the resolution of the dispersion energy spectra and the accuracy of the dispersion curves.
|
Received: 24 February 2022
Published: 03 January 2023
|
|
|
|
|
|
A comparison chart of the original amplitude curve and the curve after amplitude equalization a—the original multi-peak amplitude curve;b—the curve after the 4th power operation
|
层号 | h /m | ρ/(kg?m-3) | vp/(m?s-1) | vs /(m?s-1) | 1 | 10.0 | 2000.0 | 900.0 | 300.0 | 2 | 5.0 | 2000.0 | 1500.0 | 500.0 | 半空间 | ~ | 2000.0 | 1200.0 | 400.0 |
|
Stratum parameters of the theoretical model
|
|
Numerical simulation of theoretical model a—simulated seismic data;b—dispersive energy generated by the conventional phase-shift method;c—dispersive energy generated by the improved phase-shift method
|
|
Original shot record a—160~360 trace record of the 1st shot;b—186~210 trace record of the 1st shot
|
|
Dispersive energy spectrum generated by conventional phase-shift method(a) and improved phase-shift method(b)
|
|
The dispersion curve of the 1st shot (a) and the shear wave velocity structure of the formation below the 1st shot(b)
|
|
2D shear wave velocity structure section in the study area
|
[1] |
丁连靖, 冉伟彦. 天然源面波频率—波数法的应用[J]. 物探与化探, 2005, 29(2):138-141,145.
|
[1] |
Ding L J, Ran W Y. The application of natural source surface wave frequency-waves method[J]. Geophysical and Geochemical Exploration, 2005, 29(2): 138-141,145.
|
[2] |
Gribler G, Liberty L M, Mikesell T D, et al. Isolating retrograde and prograde Rayleigh-wave modes using a polarity mute[J]. Geophysics, 2016, 81(5):V379-V385.
|
[3] |
夏江海, 高玲利, 潘雨迪, 等. 高频面波方法的若干新进展[J]. 地球物理学报, 2015, 58(8):2591-2605.
|
[3] |
Xia J H, Gao L L, Pan Y D, et al. New findings in high-frequency surface wave method[J]. Chinese Journal of Geophysics, 2015, 58(8):2591-2605.
|
[4] |
杨成林. 瑞雷波勘探[M]. 北京: 地质出版社, 1993.
|
[4] |
Yang C L. Rayleigh wave exploration[M]. Beijing: Geological Publishing House, 1993.
|
[5] |
Park C B, Miller R D, Xia J H. Multichannel analysis of surface waves[J]. Geophysics, 1999, 64(3):800-808.
|
[6] |
王建文, 孙秀容, 王宏科, 等. 双源面波地震勘探在煤层采空区探测中的应用[J]. 工程地球物理学报, 2010, 7(4):403-407.
|
[6] |
Wang J W, Sun X R, Wang H K, et al. Application of double-source surface wave prospecting in coal mined-out area[J]. Chinese Journal of Engineering Geophysics, 2010, 7(4):403-407.
|
[7] |
王建文, 孙秀容, 王宏科, 等. 综合地震勘探方法在陕北煤田采空区探测中的应用[J]. 中国煤炭地质, 2010, 22(9):48-54.
|
[7] |
Wang J W, Sun X R, Wang H K, et al. Application of integrated seismic prospecting in northern Shaanxi Coalfields Gob area detection[J]. Coal Geology of China, 2010, 22(9):48-54.
|
[8] |
尹晓菲, 胥鸿睿, 夏江海, 等. 一种基于层析成像技术提高浅地表面波勘探水平分辨率的方法[J]. 地球物理学报, 2018, 61(6):2380-2395.
|
[8] |
Yin X F, Xu H R, Xia J H, et al. A travel-time tomography method for improving horizontal resolution of high-frequency surface-wave exploration[J]. Chinese Journal of Geophysics, 2018, 61(6):2380-2395.
|
[9] |
郑立宁, 谢强, 冯治国, 等. 瞬态瑞雷面波法岩溶路基注浆质量检测现场试验研究[J]. 岩土工程学报, 2011, 33(12):1934-1937.
|
[9] |
Zheng L N, Xie Q, Feng Z G, et al. Field tests on grouting effect of karst roadbed based on transient Rayleigh wave method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12):1934-1937.
|
[10] |
蔡露曦, 付兰兰, 王强, 等. 基于改进面波技术的转换波静校正方法研究[J]. 非常规油气, 2021, 8(3):17-22.
|
[10] |
Cai L X, Fu L L, Wang Q, et al. Research on static correction method of converted wave based on improved surface wave technology[J]. Unconventional Oil & Gas, 2021, 8(3):17-22.
|
[11] |
姜福豪, 李培明, 张翊孟, 等. 多道面波频散分析在实际大炮数据中的应用[J]. 石油地球物理勘探, 2018, 53(1):17-24.
|
[11] |
Jiang F H, Li P M, Zhang X M, et al. Frequency dispersion analysis of MASW in real seismic data[J]. Oil Geophysical Prospecting, 2018, 53(1):17-24.
|
[12] |
吴华, 李庆春, 邵广周. 瑞利波波形反演的发展现状及展望[J]. 物探与化探, 2018, 42(6):1103-1111.
|
[12] |
Wu H, Li Q C, Shao G Z. Development status and prospect of Rayleigh waveform inversion[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1103-1111.
|
[13] |
刘辉, 李静, 曾昭发, 等. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
|
[13] |
Liu H, Li J, Zeng S F, et al. Stochastic inversion of surface dispersion curves based on Bayesian theory[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 951-960.
|
[14] |
周云腾, 张致付. F-K域多尺度瑞雷面波全波形反演[J]. 地球物理学进展, 2020, 35(6):2309-2314.
|
[14] |
Zhou Y T, Zhang Z F. Multiscale Rayleigh wave full waveform inversion in F-K domain[J]. Progress in Geophysics, 2020, 35(6):2309-2314.
|
[15] |
Li J, Feng Z, Gerard S. Wave-equation dispersion inversion[J]. Geophysical Journal International, 2017, 208(3):1567-1578.
|
[16] |
胡明顺, 潘冬明, 李娟娟, 等. 基于频散曲线合成面波地震记录的方法[J]. 煤田地质与勘探, 2010, 38(2):59-62.
|
[16] |
Hu M S, Pan D M, Li J J, et al. The method of synthesizing surface-wave seismogram based on dispersion curves[J]. Coal Geology & Exploration, 2010, 38(2):59-62.
|
[17] |
李晓斌, 杨振威, 云美厚, 等. 矿山微地震四线交错观测系统与面波速度成像[J]. 煤炭学报, 2019, 44(S2):643-649.
|
[17] |
Li X B, Yang Z W, Yun M H, et al. Four-line staggered grid survey layout of mine micro-seismic and surface wave velocity structure imaging[J]. Journal of China Goal Society, 2019, 44(S2):643-649.
|
[18] |
杨天春, 吴燕清, 刘新华. 对瑞利波频散曲线计算中高频数值溢出的处理[J]. 煤炭学报, 2007, 32(10):1041-1045.
|
[18] |
Yang T C, Wu Y Q, Liu X H. Treating of numerical overflow in high frequency for computing Rayleigh wave dispersion curves[J]. Journal of China Goal Society, 2007, 32(10):1041-1045.
|
[19] |
董智开, 段文胜, 肖承文, 等. 基于快速标量传递算法的瑞雷波频散曲线反演研究[J]. 北京大学学报:自然科学版, 2020, 56(4):614-628.
|
[19] |
Dong Z K, Duan W S, Xiao C W, et al. Inversion research of Rayleigh wave dispersion curve based on fast scalar transfer algorithm[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(4):614-628.
|
[20] |
Yilmaz O Z. Seismic data processing[M]. Tulsa: Society of Exploration Geophysicists, 1987.
|
[21] |
Park C B, Miller R D, Xia J H. Imaging dispersion curves of surface waves on multi-channel record[C]// SEG Technical Program Expanded Abstracts, 1998:1377-1380.
|
[22] |
Mcmechan G A, Yedlin M J. Analysis of dispersive waves by wavefield transformation[J]. Geophysics, 1981, 46(6):869-874.
|
[23] |
Xia J H, Xu Y X, Miller R D. Generating an image of dispersive energy by frequency decomposition and slant stacking[J]. Pure and Applied Geophysics, 2007, 164(5):941-956.
|
[24] |
罗银河, 夏江海, 刘江平, 等. 基阶与高阶瑞利波联合反演研究[J]. 地球物理学报, 2008, 51(1):242-249.
|
[24] |
Luo Y H, Xia J H, Liu J P, et al. Joint inversion of fundamental and higher mode Rayleigh waves[J]. Chinese Journal of Geophysics, 2008, 51(1):242-249.
|
[25] |
邵广周, 李庆春. 联合应用τ-p变换法和相移法提取面波频散曲线[J]. 石油地球物理勘探, 2010, 45(6):836-840.
|
[25] |
Shao G, Li Q C. Joint application of τ-p and phase-shift stacking method to extract ground wave dispersion curve[J]. Oil Geophysics Prospecting, 2010, 45(6):836-840.
|
[26] |
沈超. 高频面波在速度非递增水平层状模型中的频散特性及反演[D]. 武汉: 中国地质大学(武汉), 2017.
|
[26] |
Shen C. Dispersion characteristics and inversion of high-frequency surface waves in horizontal layered models with velocity not increasing with depth[D]. Wuhan: China University of Geosciences(Wuhan), 2017.
|
[27] |
侯世宁, 薛海飞, 董守华, 等. 地质条件复杂地区瑞雷波勘探正演模拟[J]. 煤田地质与勘探, 2010, 38(6):66-70.
|
[27] |
Hou S N, Xue H F, Dong S H, et al. Forward modeling of Rayleigh wave exploration in geologically complicated areas[J]. Coal Geology & Exploration, 2010, 38(6):66-70.
|
[1] |
XIANG Zhu-Bao, ZHANG Da-Zhou, ZHU De-Bing, LI Ming-Zhi, XIONG Zhang-Qiang. Exploring the Rayleigh wave propagation characteristics in different aggregate concrete models[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1226-1235. |
[2] |
LI Chuan-Jin, WANG Qiang, JIAN Xiang, ZHENG Tao, ZHAN Su-Hua, CHEN Shao-Wei. Microtremor signal simulation and its application in microtremor exploration[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1040-1047. |
|
|
|
|