|
|
Development of the NB-IoT-based measurement and control software for broadband SIP response testers for rock and ore specimens |
HOU Sheng-Lan1,2( ), CHEN Ru-Jun1,2,3,4( ), WANG Zi-Hui1,2, LIU Zhi-Tong1,2, LIU Jin1,2 |
1. School of Geoscience and Info-Physics, Central South University, Changsha 410083,China 2. AIoT Innovation and Entrepreneurship Education Center for Geology and Geophysics, Central South University, Changsha 410083,China 3. The Key Laboratory of Nonferrous Metal Mineralization Prediction and Geological Environment Detection of Ministry of Education, Changsha 410083,China 4. Hunan Key Laboratory of Non-ferrous Resources and Geological Disaster Exploration, Changsha 410083,China |
|
|
Abstract Spectral induced polarization (SIP) response testers for rock and ore specimens determine the SIP response differences between ore bodies and host rocks by measuring the SIP characteristics of rock and ore specimens, thus providing a basis for ore prospecting. They are widely used in geophysical exploration. However, the existing SIP response testers have shortcomings in terms of bandwidth, intelligence, portability, and power consumption. Given this, this study developed a piece of measurement and control software for SIP response testers based on the Internet of Things (IoT) techniques including NB-IoT, Bluetooth, and Wifi, realizing the functions such as near-field communication, cloud communication, data visualization, and data processing. The test results verify that the software can achieve the desired effect owing to its easy operation, stable running, and friendly man-machine interaction.
|
Received: 27 September 2021
Published: 03 January 2023
|
|
Corresponding Authors:
CHEN Ru-Jun
E-mail: 1875565461@qq.com;chen.rujun@foxmail.com
|
|
|
|
|
Schematic diagram of complex resistivity measurement for rock and ore specimen
|
|
Overall structure diagram of measurement and control system
|
|
Instruction protocol parsing format diagram
|
| 类型 | 描述 | | | Object | String | 标本名 | 属性 | Resistivity | String | 电阻率 | | Phase | String | 相位 | | Frequency | String | 频率 | 命令 | Status | String | 仪器状态 | | Config | String | 配置指令 |
|
Product attributes and commands
|
|
The main flow chart of the Android App
|
信号频率 f1/Hz | 采样频率 f2/Hz | 采样时间 t/s | 采样点数 (N=f2×t) | 频率分辨率 (r=f2/N) | f1>50000 | 1250000 | 0.0032 | 4000 | 312.500 | 50000≥f1>5000 | 625000 | 0.0064 | 4000 | 156.250 | 5000≥f1>1000 | 312500 | 0.0128 | 4000 | 78.125 | 1000≥f1>100 | 156250 | 0.5000 | 78125 | 2.000 | 100≥f1≥1 | 78125 | 1.0000 | 78125 | 1.000 |
|
Relationship among sampling frequency, sampling points and signal frequency
|
|
User interface of short-rang control(a),parameter setling(b) and remote control(c) in Android App for SIP tester for rock and ore specimens
|
|
SIP response of chalcopyrite specimen and its photo
|
|
Photo of schist(a) and its SIP response(b)
|
[1] |
曹中林, 昌彦君, 何展翔. 基于演化算法的复电阻率频谱参数反演[J]. 工程地球物理学报, 2005, 2(1):33-38.
|
[1] |
Cao Z L, Chang Y J, He Z X. Inversion of complex resistivity spectrum parameters based on evolutionary algorithm[J]. Journal of Engineering Geophysics, 2005, 2(1): 33-38.
|
[2] |
罗传华, 昌彦君, 李志华. 频谱激电法在铜陵市某滑坡地段滑动面勘探中的应用[J]. 工程地球物理学报, 2017, 14(1):26-30.
|
[2] |
Luo C H, Chang Y J, Li Z H. The application of the spectrum induced polarization method in the exploration of the sliding surface of a landslide section in Tongling City[J]. Journal of Engineering Geophysics, 2017, 14(1): 26-30.
|
[3] |
郑冰. 频谱激电法在某铅锌银矿的应用[J]. 工程地球物理学报, 2015, 12(6):750-754.
|
[3] |
Zheng B. Application of spectrum induced polarization method in a lead-zinc-silver mine[J]. Journal of Engineering Geophysics, 2015, 12(6):750-754.
|
[4] |
武斌, 邹俊, 马代海. 频谱激电法在天然气水合物勘查中的应用[J]. 四川地质学报, 2016, 36(1):135-138.
|
[4] |
Wu B, Zou J, Ma D H. Application of spectrum induced polarization method in natural gas hydrate exploration[J]. Journal of Sichuan Geology, 2016, 36(1): 135-138.
|
[5] |
Deng Y, Shi X, Zhang Z. Application of spectral induced polarization for characterizing surfactant-enhanced DNAPL remediation in laboratory column experiments[J]. Journal of Contaminant Hydrology, 2020, 230:103603.
|
[6] |
杨迪. 天然岩矿石复电阻率测量及频谱曲线特征研究[D]. 北京: 中国地质大学(北京), 2019.
|
[6] |
Yang D. Study on complex resistivity measurement and spectrum curve characteristics of natural rock ore[D]. Beijing: China University of Geosciences (Beijing), 2019.
|
[7] |
郑树桐. 扫频介电测井岩石物理基础实验研究[D]. 北京: 中国石油大学(北京), 2018.
|
[7] |
Zheng S T. Basic experimental study on rock physics of swept frequency dielectric logging[D]. Beijing: China University of Petroleum (Beijing), 2018.
|
[8] |
曹春国, 冯国彦, 刘红. 频谱激电法(SIP)在深部金属矿探测中的原理与应用[J]. 山东国土资源, 2009, 25(9):41-45.
|
[8] |
Cao C G, Feng G Y, Liu H. Principle and application of spectrum IP method (SIP) in deep metal mine exploration[J]. Shandong Land and Resources, 2009, 25(9):41-45.
|
[9] |
葛双超, 邓明, 陈凯. 复电阻率测量方法与模型仿真[J]. 地球科学进展, 2014, 29(11):1271-1276.
|
[9] |
Ge S C, Deng M, Chen K. Complex resistivity measurement method and model simulation[J]. Advances in Earth Sciences, 2014, 29(11):1271-1276.
|
[10] |
林君. 高端地球物理仪器研究及我国产业化现状[J]. 仪器仪表学报, 2010, 31(8):174-180.
|
[10] |
Lin J. Research on high-end geophysical instruments and the status quo of industrialization in my country[J]. Chinese Journal of Scientific Instrament, 2010, 31(8):174-180.
|
[11] |
陈儒军. 新技术在电法仪器中的应用概况及前景[C]// 当代矿山地质地球物理新进展: 中国地质学会, 2004:239-244.
|
[11] |
Chen R J. Overview and prospects of the application of new technologies in electrical instruments[C]// New progress in contemporary mine geology and geophysics: The Geological Society of China, 2004:239-244.
|
[12] |
王甫康, 庹先国, 刘勇, 等. 节点地震仪无线传输系统设计[J]. 制造业自动化, 2021, 43(11):85-88.
|
[12] |
Wang F K, Tuo X G, Liu Y, et al. Design of wireless transmission system for nodal seismograph[J]. Manufacturing Automation, 2021, 43(11):85-88.
|
[13] |
文尚石, 汤井田, 裴婧, 等. 基于Android平台的广域电磁接收机采集监控软件研究与实现[J]. 地球物理学进展, 2018, 33(2):866-873.
|
[13] |
Wen S S, Tang J T, Pei J, et al. Research and implementation of wide-area electromagnetic receiver acquisition and monitoring software based on Android platform[J]. Progress in Geophysics, 2018, 33(2):866-873.
|
[14] |
何锦淳, 李爵成, 李丹. 基于 STM32 的智能安防系统[J]. 物联网技术, 2020, 10(5):49-54.
|
[14] |
He J C, Li J C, Li D. Smart security system based on STM32[J]. Internet of Things Technology, 2020, 10(5):49-54.
|
[15] |
舒泰歌, 游乾乾, 李慕凡. 基于STM32 无线信息采集系统设计[J]. 科技风, 2020(15):120-121.
|
[15] |
Shu T G, You Q Q, Li M F. Design of wireless information collection system based on STM32[J]. Technology Wind, 2020(15):120-121.
|
[16] |
杨杰. 基于华为云的数据挖掘和展示系统研究[J]. 无线万联科技, 2020, 17(24):24-25.
|
[16] |
Yang J. Research on data mining and display system based on Huawei Cloud[J]. Wireless Wanlian Technology, 2020, 17(24):24-25.
|
[17] |
金恩曼, 陈培余. 一种智能大棚的温湿度检测系统数字技术与应用[J]. 数字与技术, 2019, 37(7):85-87.
|
[17] |
Jin E M, Chen P Y. Digital technology and application of a temperature and humidity detection system for intelligent greenhouse[J]. Digital and Technology, 2019, 37(7):85-87.
|
[1] |
WANG Fei-Fei, CHEN Ru-Jun, LI Sheng-Jie, SHEN Rui-Jie, YIN Hao, LIU Feng-Hai, PENG Xin. Development of the acquisition system of a broadband spectral induced polarization testers for rock and ore samples[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1454-1462. |
[2] |
SHI Jia-Yu, GUO Peng, LI Yong. Research and implementation of key technologies of spectral induced polarization instruments[J]. Geophysical and Geochemical Exploration, 2021, 45(6): 1475-1481. |
|
|
|
|