|
|
Microtremor signal simulation and its application in microtremor exploration |
LI Chuan-Jin1,2,3( ), WANG Qiang1, JIAN Xiang1, ZHENG Tao1, ZHAN Su-Hua1,2, CHEN Shao-Wei1 |
1. School of Civil Engineering,Fujian University of Technology,Fuzhou 350118,China 2. Institute of Geotechnical Engineering,Fujian University of Technology,Fuzhou 350118,China 3. Key Laboratory of Underground Engineering in Universities of Fujian Province,Fujian University of Technology,Fuzhou 350118,China |
|
|
Abstract This study synthesized microtremor signals using the normal mode superposition.The dispersion curves of the synthesized microtremor signals were calculated using the spatial autocorrelation method,and the calculated results agreed well with theoretical dispersion curves.The simulation of microtremor signals involves many parameters,which are of great significance for microtremor exploration.As shown by results from numerical experiments of these parameters,the hypocentral distance and array size had a significant influence on the results.Moreover,high-order surface waves should be considered for complex strata,while small-size arrays tended to yield high-frequency dispersion information at quiet observation sites,thus improving the resolution of shallow strata.Therefore,it is necessary to consider the influences of hypocenter distribution,array size,and high-order surface waves on exploration results in microtremor exploration.
|
Received: 16 June 2022
Published: 11 October 2023
|
|
|
|
|
序号 | 层厚 度/m | 纵波速度/ (m·s-1) | 横波速度/ (m·s-1) | 密度/ (g·cm-3) | 1 | 10 | 1 300 | 200 | 1.9 | 2 | 50 | 1 800 | 500 | 2.2 | 3 | ∞ | 2 500 | 1 000 | 2.5 |
|
Parameters of geological model
|
|
Array configuration
|
|
Sources distribution
|
|
The vertical component wave of the synthetic microtremor signal
|
|
Spatial autocorrelation coefficients
|
|
Frequency spectrogram of synthetic microtremor signal
|
|
Comparison of theoretical and synthetic dispersion curves
|
|
Dispersion curves with different sources distances a—source distance in the range of 1 to 50 m;b—source distance in the range of 50 to 200 m;c—comparison of dispersion curves
|
|
Dispersion curves with different array sizes a—R=1 m;b—R=100 m;c—comparison of dispersion curves
|
序号 | 层厚 度/m | 纵波速度/ (m·s-1) | 横波速度/ (m·s-1) | 密度/ (g·cm-3) | 1 | 10 | 1300 | 200 | 1.9 | 2 | 30 | 1800 | 500 | 2.2 | 3 | 20 | 2000 | 300 | 2.0 | 4 | ∞ | 2500 | 1000 | 2.5 |
|
Parameters of geological model with high velocity interlayer
|
|
Dispersion curves with high velocity interlayer a—dispersion curve calculated by synthetic microtremor signal;b—power fractions to different modes of Rayleigh waves;c—comparison of dispersion curves
|
[1] |
Xu P, Ling S, Long G, et al. ESPAC-based 2D mini-array microtremor method and its application in urban rail transit construction planning[J]. Tunnelling and Underground Space Technology, 2021, 115(3):104070.
|
[2] |
徐佩芬, 侍文, 凌苏群, 等. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报, 2012, 55(6):2120-2128.
|
[2] |
Xu P F, Shi W, Ling S Q, et al. Mapping spherically weathered "Boulders" using 2D microtremor profiling method:A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 2012, 55(6):2120-2128.
|
[3] |
杜亚楠, 徐佩芬, 凌甦群. 土石混合滑坡体微动探测:以衡阳拜殿乡滑坡体为例[J]. 地球物理学报, 2018, 61(4):1596-1604.
|
[3] |
Du Y N, Xu P F, Ling S Q. Microtremor survey of soil-rock mixture landslides:An example of Baidian township,Heng yang City[J]. Chinese Journal of Geophysics, 2018, 61(4):1596-1604.
|
[4] |
徐浩, 吴小平, 盛勇, 等. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6):1512-1519.
|
[4] |
Xu H, Wu X P, Sheng Y, et al. Application of microtremor survey method in detection of urban land subsidence[J]. Geophysical and Geochemical Exploration, 2021, 45(6):1512-1519.
|
[5] |
李巧灵, 张辉, 雷晓东, 等. 综合利用多道瞬态面波和微动探测分析斜坡内部结构[J]. 物探与化探, 2022, 46(1):258-267.
|
[5] |
Li Q L, Zhang H, Lei X D, et al. Analysis of internal structure of slope by using multi-channel transient surface wave exploration and microtremor survey[J]. Geophysical and Geochemical Exploration, 2022, 46(1):258-267.
|
[6] |
李井冈, 谢朋, 王秋良, 等. 不同台阵形式对微动探测结果的影响[J]. 大地测量与地球动力学, 2020, 40(1):98-103.
|
[6] |
Li J G, Xie P, Wang Q L, et al. Influence of different array type on the results of microtremor survey[J]. Journal of Geodesy and Geodynamics, 2020, 40(1):98-103.
|
[7] |
徐佩芬, 杜亚楠, 凌甦群, 等. 微动多阶瑞雷波SPAC系数反演方法及应用研究[J]. 地球物理学报, 2020, 63(10):3857-3867.
|
[7] |
Xu P F, Du Y N, Ling S Q, et al. Microtremor survey method based on inversion of the SPAC coefficient of multi-mode Rayleigh waves and its application[J]. Chinese Journal of Geophysics, 2020, 63(10):3857-3867.
|
[8] |
Wang J, Wu G, Chen X. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4):3708-3723.
|
[9] |
李雪燕, 陈晓非, 杨振涛, 等. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报, 2020, 63(1):247-255.
|
[9] |
Li X Y, Chen X F, Yang Z T, et al. Application of high-order surface waves in shallow exploration:An example of the Suzhou river,Shanghai[J]. Chinese Journal of Geophysics, 2020, 63(1):247-255.
|
[10] |
周晓华, 陈祖斌, 曾晓献, 等. 交错网格有限差分法模拟微动信号[J]. 吉林大学学报:地球科学版, 2012, 42(3):852-857.
|
[10] |
Zhou X H, Chen Z B, Zeng X X, et al. Simulation of microtremor using staggered-grid finite difference method[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(3):852-857.
|
[11] |
杜亚楠. 基于多阶瑞雷波视频散曲线和椭圆率曲线联合反演的微动探测方法研究[D]. 北京: 中国科学院大学, 2019.
|
[11] |
Du Y N. The study on the microtremor survey method based on joint inversion of apparent dispersion curves with consideration of both fundamental and higher modes of Rayleigh waves,and ellipticity curve[D]. Beijing: University of Chinese Academy of Sciences, 2019.
|
[12] |
周晓华, 林君, 张怀柱, 等. 微动中多模式面波频散曲线的映射式提取方法[J]. 地球物理学报, 2014, 57(8):2631-2643.
|
[12] |
Zhou X H, Lin J, Zhang H Z, et al. Mapping extraction dispersion curves of multi-mode Rayleigh waves in microtremor[J]. Chinese Journal of Geophysics, 2014, 57(8):2631-2643.
|
[13] |
Herrmann R B. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismological Research Letters, 2013, 84(6):1081-1088.
|
[14] |
Gilbert F. Excitation of the normal modes of the earth by earthquake sources[J]. Geophysical Journal of the Royal Astronomical Society, 1971, 22(2):223-226.
|
[15] |
Woodhouse J H. The calculation of the eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun[J]. Seismological Algorithms, 1988, 230:321-370.
|
[16] |
Dahlen F A, Tromp J. Theoretical global seismology[M]. Princeton: Princeton University Press, 1998.
|
[17] |
Yang H Y, Zhao L, Hung S H. Synthetic seismograms by normal-mode summation:A new derivation and numerical examples[J]. Geophysical Journal International, 2010, 183(3):1613-1632.
|
[18] |
Haskell N A. The dispersion of surface waves on multilayered[J]. Bulletin of the Seismological Society America, 1953, 43(1):17-34.
|
[19] |
Knopoff L. A matrix method for elastic wave problems[J]. Bulletin of the Seismological Society of America, 1964, 54(1):431-438.
|
[20] |
Buchen P W, Ben Hador R. Free-mode surface-wave computations[J]. Geophysical Journal International, 1996, 124(3):869-887.
|
[21] |
Abo Z A. Dispersion function computations for unlimited frequency values[J]. Geophysical Journal International, 1979, 58(1):91-105.
|
[22] |
Chen X F. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 1993, 115(2):391-409.
|
[23] |
凡友华, 刘家琦, 肖柏勋. 计算瑞利波频散曲线的快速矢量传递算法[J]. 湖南大学学报, 2002, 29(5):25-30.
|
[23] |
Fan Y H, Liu J Q, Xiao B X. Fast vector-transfer algorithm for computation of Rayleigh wave dispersion curves[J]. Journal of Hunan University:Natural Sciences Edition, 2002, 29(5):25-30.
|
[24] |
Tokimatsu K, Tamura S, Kojima H. Effects of multiple modes on Rayleigh wave dispersion characteristics[J]. Journal of Geotechnical Engineering, 1992, 118(10):1529-1543.
|
[25] |
Harkrider D G. Surface waves in multilayered elastic media. I. Rayleigh and Love waves from buried sources in a multilayered elastic half-space[J]. Bulletin of the Seismological Society of America, 1964, 54(2):627-679.
|
[26] |
Ling S Q. Research on the estimation of phase velocities of surface waves in microtremors[D]. Sapporo: Hokkaidou University, 1994.
|
[27] |
张碧星, 鲁来玉, 鲍光淑. 瑞利波勘探中“之”字形频散曲线研究[J]. 地球物理学报, 2002, 45(2):263-274.
|
[27] |
Zhang B X, Lu L Y, Bao G S. A study on zigzag dispersion curves in Rayleigh wave exploration[J]. Chinese Journal of Geophysics, 2002, 45(2):263-274.
|
[1] |
XIANG Zhu-Bao, ZHANG Da-Zhou, ZHU De-Bing, LI Ming-Zhi, XIONG Zhang-Qiang. Exploring the Rayleigh wave propagation characteristics in different aggregate concrete models[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1226-1235. |
[2] |
LI Xin-Xin, LI Jiang, LIU Jun, SHEN Hong-Yan. Processing of the seismic Rayleigh wave data of coalfields based on the improved phase-shift method[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1470-1476. |
|
|
|
|