|
|
|
| Reading, writing, and application of raw data files from the Aether magnetotelluric system based on the C# programming language |
HE Jing-Long1,2( ), KOU Shao-Lei1,2( ), LIU Cheng1,2, LI Han1,2, YANG Kai1,2 |
1. Xi’an Center of Mineral Resources Survey, China Geological Survey, Xi’an 710000, China 2. Technology Innovation Center for Gold Ore Exploration, China Geological Survey, Xi’an 710100, China |
|
|
|
|
Abstract Based on the analysis of the data files from the MTU series instruments, this study explored the data files from the Aether magnetotelluric system. The C# programming language was employed to write a program to decode the original time series A24 files, magnetic probe calibration apial files, and standard time series atts files, completing the development of time series split, read/write, and display modules, probe file read/write and display modules, and Fourier transform and Fourier coefficient display modules. Finally, the applicability of the program used in this study was tested by comparing the above modules with the relevant modules in the prMT processing software. The operability of the program was tested using actual field data. Overall, this study provides a certain basis and reference for delving into power spectrum estimation and interference signal processing.
|
|
Received: 20 February 2024
Published: 23 October 2025
|
|
|
|
|
|
| 字节位置 | 数据类型 | 字节数 | 字节意义 | 备注 | | 1~4 | string(字符串) | 4 | 系统版本 | | | 5~6 | int16(2字节整型) | 2 | 数据头长度 | | | 9~24 | string(字符串) | 16 | 仪器编号 | | | 25~26 | int16(2字节整型) | 2 | 网络地址 | | | 27~30 | int32(4字节整型) | 4 | 网络WiFi | | | 31~32 | int16(2字节整型) | 2 | 发送包ID | | | 33~36 | int32(4字节整型) | 4 | 发送头包ID | | | 37~40 | int32(4字节整型) | 4 | 接收包ID | | | 45~46 | int16(2字节整型) | 2 | 固件版本 | | | 47~48 | int16(2字节整型) | 2 | FPGA版本 | | | 49~80 | string(字符串) | 32 | GPS位置信息 | | | 81~104 | string(字符串) | 24 | GPS时间信息 | | | 105~112 | string(字符串) | 8 | GPS同步时钟 | | | 113~116 | int32(4字节整型) | 4 | 采样率上限 | | | 117~120 | int32(4字节整型) | 4 | 单位采样率 | | | 149~212 | string(字符串) | 64 | 通道号 | 8通道 | | 213~276 | string(字符串) | 64 | 探头号 | 8通道 | | 277~292 | string(字符串) | 16 | 通道方向 | 8通道 | | 293~324 | int32(4字节整型) | 32 | 方位角 | 8通道 | | 341~356 | int16(2字节整型) | 16 | 极距 | 8通道 | | 357~372 | int16(2字节整型) | 16 | 增益 | 8通道 | | 373~380 | string(字符串) | 8 | 系统状态 | | | 397~400 | int32(4字节整型) | 4 | SD卡大小 | | | 401~432 | string(字符串) | 32 | 测点名称 | | | 496~560 | string(字符串) | 64 | 文件名称 | | | 561~564 | int32(4字节整型) | 4 | 数据体长度 | | | 565~568 | int32(4字节整型) | 4 | ADC位数 | | | 577~580 | int32(4字节整型) | 4 | SD卡剩余大小 | | | 581~592 | string(字符串) | 12 | GPS高程信息 | | | 609~612 | int32(4字节整型) | 4 | ADC精度指标 | | | 1009~1040 | string(字符串) | 32 | GPS时间 | | | 1041~2048 | | | 保留字节 | 扩展保留 |
|
Data header byte allocation table of A24 file
|
| 字节位置 | 数据类型 | 字节数 | 字节意义 | 备注 | | 1~8 | string(字符串) | 8 | ATEXHG | | | 9~10 | int16(2字节整型) | 2 | 道数 | | | 11~12 | int16(2字节整型) | 2 | 占位 | | | 17~24 | double(双精浮点型) | 8 | 采样率 | | | 25~28 | int32(4字节整型) | 4 | 开始时间 | 时间戳 | | 33~36 | int32(4字节整型) | 4 | 结束时间 | 时间戳 | | 37~40 | int32(4字节整型) | 4 | 持续时间 | s | | 41~44 | int32(4字节整型) | 4 | 采样数 | | | 63~78 | string(字符串) | 16 | 仪器编号 | | | 89~142 | 通道类型 | 54 | CH1 | Ex | | 143~196 | 通道类型 | 54 | CH2 | Ey | | 197~250 | 通道类型 | 54 | CH3 | Hx | | 251~304 | 通道类型 | 54 | CH4 | Hy | | 305~358 | 通道类型 | 54 | CH5 | Hz | | 359~952 | 通道类型 | 11×54 | CH6-CH16 | 预留通道 | | 953~956 | int32(4字节整型) | 4 | 点号 | | | 957~964 | double(双精浮点型) | 8 | 经度 | | | 965~972 | double(双精浮点型) | 8 | 纬度 | | | 973~976 | float(浮点型) | 4 | 高程 | | | 977~978 | int16(2字节整型) | 2 | 线号 | | | 985~2048 | | | 保留字节 | 扩展保留 |
|
Data header byte allocation table of atts file
|
| 字节位置 | 数据类型 | 字节数 | 字节意义 | 备注 | | 1~16 | string(字符串) | 16 | <AETRHUB_SENSOR> | | | 17~18 | int16(2字节整型) | 2 | 系列编号 | | | 19~20 | int16(2字节整型) | 2 | 类型编号 | | | 21~24 | Int32(4字节整型) | 4 | 顺序编号 | | | 25~40 | string(字符串) | 16 | 探头号 | | | 41~64 | | 24 | 保留字节 | 扩展保留 |
|
Data header byte allocation table of apial file
|
|
UI diagram of time series data reading and writing module
|
|
UI diagram of time series editing module
|
|
UI diagram of probe calibration file analysis module
|
|
Comparison of data header information of L02P011 using prMT module (a) and DataWindow module (b)
|
|
Comparison of FFT of L01P011 using prMT module (a) and attsWindow module (b)
|
|
Comparison of time series display
|
|
Comparison of data volume display
|
| [1] |
曹小玲, 严良俊, 陈清礼. 改进阈值的TI小波去噪法在MT去噪中的应用[J]. 物探与化探, 2018, 42(3):600-607.
|
| [1] |
Cao X L, Yan L J, Chen Q L. The application of translation invariant wavelet de-noising method with a modified threshold to denoising in magnetotelluric sounding[J]. Geophysical and Geochemical Exploration, 2018, 42(3):600-607.
|
| [2] |
桂团福, 邓居智, 李广, 等. 数学形态学和K-SVD字典学习在大地电磁数据去噪中的应用[J]. 中国有色金属学报, 2021, 31(12):3713-3729.
|
| [2] |
Gui T F, Deng J Z, Li G, et al. De-noising magnetotelluric data based on mathematical morphology and K-SVD dictionary learning[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(12):3713-3729.
|
| [3] |
耿国帅, 杨帆. 马氏距离法在东昆仑东段多元异常圈定中的对比试验[J]. 物探与化探, 2021, 45(2):440-449.
|
| [3] |
Geng G S, Yang F. The application of Mahalanobis distance to the delineation of multivariate outliers in the East Kunlun Mountains[J]. Geophysical and Geochemical Exploration, 2021, 45(2):440-449.
|
| [4] |
韩静, 詹艳, 孙翔宇, 等. 强电磁干扰环境下的大地电磁数据特征及处理[J]. 地震地质, 2022, 第44卷(3):736-752.
|
| [4] |
Han J, Zhan Y, Sun X Y, et al. Characteristics and processing of magnetotelluric dataunder strong electromagnetic interference enviiroment[J]. Seismology and Geology, 2022, 44(3):736-75.
|
| [5] |
程正璞, 郭淑君, 魏强, 等. AMT地形影响与带地形反演研究[J]. 物探与化探, 2023, 47(1):146-155.
|
| [5] |
Cheng Z P, Guo S J, Wei Q, et al. Audiomagnetotelluric data:Influence of terrain and the inversion considering terrain[J]. Geophysical and Geochemical Exploration, 2023, 47(1):146-155.
|
| [6] |
Tipirneni S V, Jalla U, Varre S, et al. Development of GUI using visual studio to monitor sensor signals[C]// Advances in Power Systems and Energy Management, 2021.
|
| [7] |
袁航, 于群, 王勇军. 基于C#的雷达侦察设备测向精度试验数据处理软件设计与实现[J]. 舰船电子工程, 2020, 40(10):100-103.
|
| [7] |
Yuan H, Yu Q, Wang Y J. Design and Implementation of Data Processing Software for Direction-Finding Accuracy Test of Radar Reconnaissance Equipment Based on C#[J]. Ship Electronic Engineering, 2020, 40(10):100-103.
|
| [8] |
吴昊, 李晓会. C#语言中数组与字符串存储、使用方式异同的比较[J]. 数字技术与应用, 2019, 37(9):148-150.
|
| [8] |
Wu H, Li X H. Comparison of similarities and differences between array and string in C# language[J]. Digital Technology & Application, 2019, 37(9):148-150.
|
| [9] |
柳建新, 刘春明, 马捷, 等.V5-2000 大地电磁测深仪文件头数据格式研究[J]. 物探化探计算技术, 2007, 29(4):359-362,279-280.
|
| [9] |
Liu J X, Liu C M, Ma J, et al. The data format of mt sounding instrument V5-2000[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2007, 29(4):359-362,279-280.
|
| [10] |
仇根根, 方慧, 朱正君, 等. 基于MATLAB平台对V5- 2000 大地电磁测深仪TBL文件的分析与应用[J]. 物探化探计算技术,2012, 34(2):178-181,7-8.
|
| [10] |
Qiu G G, Fang H, Zhu Z J, et al. The analysis and application of V5-2000 mt sounder TBL file based on the MATLAB platform[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2012, 34(2):178-181,7-8.
|
| [11] |
郭泽秋, 叶高峰, 王辉, 等. 基于MATLAB的SSMT-2000大地电磁资料批处理技术[J]. 物探与化探, 2013, 37(5):921-925.
|
| [11] |
Guo Z Q, Ye G F, Wang H, et al. The batch processing technique for magnetotelluric data with SSMT-2000 based on MATLAB[J]. Geophysical and Geochemical Exploration, 2013, 37(5):921-925.
|
| [12] |
雷清, 刘桂梅, 王身龙, 等. 基于Python对MTU和V8系列大地电磁测深仪TBL数据研究与应用[J]. 地球物理学进展, 2019, 34(5):2065-2070.
|
| [12] |
Lei Q, Liu G M, Wang S L, et al. Research and application for raw data of MTU and V8 series magnetotelluric instruments based on Python[J]. Progress in Geophysics, 2019, 34(5):2065-2070.
|
| [13] |
贺景龙, 王占彬, 寇少磊, 等. 基于C#的MTU系列大地电磁测深仪数据文件的研究与应用[J]. 物探与化探, 2023, 47(1):171-178.
|
| [13] |
He J L, Wang Z B, Kou S L, et al. A C#-based study and application of data files from MTU series magnetotelluric sounders[J]. Geophysical and Geochemical Exploration, 2023, 47(1):171-178.
|
| [14] |
杨凯. 基于Python的MTU系列大地电磁测深仪时间序列读写与应用[J]. 物探化探计算技术, 2023, 45(1):121-128.
|
| [14] |
Yang K. Reading/writing and application for time series files of MTU series magnetotelluric instruments based on Python[J]. Computing Techniques For Geophysical and Geochemical Exploration, 2023, 45(1):121-128.
|
| [15] |
谢维, 柳建新, 张东风, 等. 基于VC++大地电磁数据处理软件开发[J]. 地球物理学进展, 2009, 24(6):2242-2249.
|
| [15] |
Xie W, Liu J X, Zhang D F, et al. Development of magnetotelluric data processing software based on VC++[J]. Progress in Geophysics, 2009, 24(6):2242-2249.
|
| [16] |
曹春梅, 宋洁. 冒泡排序及其改进算法的教学设计与实现[J]. 无线互联科技, 2019, 16(4):155-157.
|
| [16] |
Cao C M, Song J. Teaching design and implementation of bubble sorting and its improved algorithm[J]. Wireless Internet Technology, 2019, 16(4):155-157.
|
| [17] |
黄向平, 彭明田, 杨永凯. 基于内存映射文件的高性能库存缓存系统[J]. 电子技术应用, 2020, 46(7):113-117,126.
|
| [17] |
Huang X P, Peng M T, Yang Y K. High performance inventory caching system based on memory mapping files[J]. Application of Electronic Technique, 2020, 46(7):113-117,126.
|
| [18] |
吴顺柳. 基于单片机的高精度数字电压表的设计[J]. 电子制作, 2021, 29(21):87-89,69.
|
| [18] |
Wu S L. Design of high precision digital voltmeter based on single chip microcomputer[J]. Practical Electronics, 2021, 29(21):87-89,69.
|
| [1] |
WAN Yan-Ming, LIU Ling, SU Xin, LIANG Shuai, GAO Xue-Feng. Prospect area analysis and evaluation of natural hydrogen reservoirs in the Zhangbei area: Interpretation of basement structures based on gravity and magnetotelluric sounding[J]. Geophysical and Geochemical Exploration, 2025, 49(5): 1030-1038. |
| [2] |
LIN Jia-Yong, XU Zhi-Min, ZHOU Cong. Data quality monitoring of the audio-frequency magnetotelluric method: Analysis of factors influencing data quality based on EH4 measurement electrodes[J]. Geophysical and Geochemical Exploration, 2025, 49(5): 1126-1132. |
|
|
|
|