|
|
|
| Design of a digital filter for optically pumped helium magnetometers |
GUO Qi1,2,3( ), DENG Xiao-Dan1,2, LI Xue-Yan1,2( ), LUAN Xiao-Dong1,2, LI Meng1,2, LI Bing1, XIE Min-Ying1, FAN Zheng-Yi1 |
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China 2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Land and Resources, Beijing 100083, China 3. Technology Innovation Center for Geophysical Exploration Technology, Beijing 100083, China |
|
|
|
|
Abstract The non-self-oscillating optically pumped helium magnetometer is widely used in the field of geophysical exploration. The filter, as a key module for the digitization of domestic magnetometers, plays a significant role in improving the performance of the magnetometer. In view of the limits of the current filter design, this study developed and implemented a multi-stage filter design characterized by a simple structure, low FPGA resource consumption, and user-friendly operation. Specifically, the multi-stage cascaded integrator comb (CIC) filter was cascaded with the infinite impulse response (IIR) filter, which was then embedded into a lock-in amplifier, thereby enabling signal extraction and detection. Through MATLAB simulation and FPGA implementation, the performance of this newly designed filter was verified, which can realize the extraction of the first and second harmonic signals during magnetic surveys. Furthermore, an optically pumped helium magnetometer configured with such a filter exhibited a picotesla (pT) sensitivity, satisfying the requirements of the Criterion of Aeromagnetic Survey. This new design provides technical support for the miniaturization of new-generation aerial magnetometers.
|
|
Received: 23 September 2024
Published: 23 October 2025
|
|
|
|
|
|
|
System diagram of optically pumped helium magnetometer
|
|
Magnetic resonance curve (a), fundamental wave (b), and second harmonic curve (c) model diagram
|
|
Basic structure diagram of lock-in amplifier
|
|
Structure diagram of single stage CIC filter
|
|
Amplitude frequency characteristics of single stage CIC filter with different decimation factor
|
|
Structural transformation of multi-stage CIC filter
|
|
Normalized amplitude frequency characteristics of multi-stage CIC filters with same decimation factor
|
|
Normalized amplitude frequency characteristics of 4-stage CIC 128 times decimation filter
|
|
Different a values correspond to amplitude frequency characteristics of first-order low-pass IIR filters
|
|
Different a values correspond to time domain characteristics of first-order low-pass IIR filters
|
|
Different fc values correspond to amplitude frequency characteristics of first-order low-pass IIR filters
|
|
Comparison of first-order and second-order low-pass IIR filters
|
|
Lock-in amplifier for fundamental signal extraction
|
|
Lock-in amplifier for second harmonic signal extraction
|
|
Measured second harmonic signal waveform
|
|
Measured fundamental signal waveform
|
| 参数 | 斯坦福SR830锁相放大器 | OE1300锁相放大器模块 | 苏黎世MFLI锁相放大器 | 本文设计锁相放大器 | | 输入模式 | 单端/差分电压输入 电流输入 | 单端/差分电压输入 电流输入 | 单端/差分电压输入 电流输入 | 单端/差分电压输入 电流输入 | | 满量程灵敏度 | 2nV~1V | 1nV~5V | 1nV~3V | 1nV~5V | | 电源电压 | 100、120、220、240VAC | 12VDC±5% | 12VDC 100~240VAC,50/60Hz | 9~36VDC | | 功率 | 40W | 18W,不超过242 | <40W | 5~6W | | 通讯接口 | GPIB、RS232 | UART、网口 | LAN、USB | UART、网口等可选 | | 尺寸 | 495.3cm×43.18cm× 13.34cm | 裸机181.3mm×100mm×43.8mm 机壳204mm×110mm×46.8mm | 28.3cm×23.2cm×10.2cm | 可内嵌于 10cm×10cm×10cm机壳内 |
|
Comparison of key indicators of digital LIA in this paper with the market related products
|
|
Optically pumped helium magnetometer tested in a shielded cylinder
|
|
Continuous measurement results of optically pumped helium magnetometer
|
|
PSD of optically pumped helium magnetometer
|
|
Dynamic test results of optically pumped helium magnetometer
|
| [1] |
Tierney T M, Holmes N, Mellor S, et al. Optically pumped magnetometers:From quantum origins to multi-channel magnetoencephalography[J]. NeuroImage, 2019, 199(1):598-608.
|
| [2] |
彭翔, 郭弘. 光泵原子磁力仪技术[J]. 导航与控制, 2022, 21 (S2):101-121,198.
|
| [2] |
Peng X, Guo H. Techniques in optically-pumped atomic magnetometer[J]. Navigation and Control, 2022, 21(S2):101-121,198.
|
| [3] |
Alexandrov, E B. Recent progress in optically pumped magnetometers[J]. Physica Scripta, 2003,2003, T105(1):27-30.
|
| [4] |
居海华, 张乐, 夏忠, 等. 基于铯光泵磁力仪的地震地磁矢量测量系统[J]. 仪器仪表学报, 2023, 44(9):111-120.
|
| [4] |
Ju H H, Zhang L, Xia Z, et al. Seismic geomagnetic vector measurement system based on optically pumped cesium magnetometer[J]. Chinese Journal of Scientific Instrument, 2023, 44(9):111-120.
|
| [5] |
张振宇. 氦光泵磁测技术研究[D]. 长春: 吉林大学, 2012.
|
| [5] |
Zhang Z Y. Research on optically pumped Helium magnetic measurement technology[D]. Changchun: Jilin University, 2012.
|
| [6] |
连明昌. 氦光泵磁力仪数字化检测系统研制[D]. 长春: 吉林大学, 2013.
|
| [6] |
Lian M C. Development of digital detection system for helium optically pumped helium magnetometer[D]. Changchun: Jilin University, 2013.
|
| [7] |
United States Government. Code of Federal Regulation,Title 15,Subtitle B,Supplement No.1 to Part 774[EB/OL].(2022-04-18)[2024-09-23]. https://www.ecfr.gov/current/title-15/subtitle-B/chapter-VII/subchapter-C/part-774/appendix-Supplement%20No.%201%20to%20Part%20774
|
| [8] |
苑效宁, 马少华, 董鹤楠. 数字锁相放大器的算法设计与优化[J]. 东北电力技术, 2022, 43(1):41-44+49.
|
| [8] |
Yuan X N, Ma S H, Dong H N. Algorithm design and optimization of digital phase locked amplifier[J]. Northeast Electric Power Technology, 2022, 43(1):41-44+49.
|
| [9] |
杜振辉, 张永明, 刘翰蔚, 等. 数字锁相放大器技术及光谱检测应用进展[J]. 测控技术, 2019, 38(11):1-8,19.
|
| [9] |
Du Z H, Zhang Y M, Liu H W, et al. Progress in digital lock -In amplifier technology and spectral detection applications[J]. Measurement & Control Technology, 2019, 38(11):1-8,19.
|
| [10] |
Zhang C, Liu H, Ge J, et al. FPGA-based digital lock-in amplifier with high-precision automatic frequency tracking[J]. IEEE Access, 2020,8:123114-123122.
|
| [11] |
Chen H Z, Li Y, Ou L Y. A Digital lock-in amplifier based on adaptive kalman filter for rail defect detection[J]. Journal of Sensors, 2023(1):7112942.
|
| [12] |
Macias-Bobadilla G, Rodríguez-Reséndiz J, Mota-Valtierra G, et al. Dual-phase lock-in amplifier based on FPGA for low-frequencies experiments[J]. Sensors, 2016, 16(3),379.
|
| [13] |
Zhang Q S, Deng M, Guo J, et al. Development of a new seismic-data acquisition station based on system-on-a-programmable-chip technology[J]. Annals of Geophysics, 2013, 56(3):4.
|
| [14] |
Wang S, Chen Z W, Zhang F, et al. The new CAS-DIS digital ionosonde[J]. Annals of Geophysics, 2013, 56(1):649-675
|
| [15] |
黄成功, 顾建松, 宗发保, 等. 氦光泵磁力仪探头设计和环路数字化研究[J]. 地球物理学报, 2019, 62(10):3675-3685.
|
| [15] |
Huang C G, Gu J S, Zong F B, et al. Design of helium optical-pumping magnetometer probe and digital loop electronics circuit[J]. Chinese Journal of Geophysics, 2019, 62(10):3675-3685.
|
| [16] |
何朝博, 滕云田, 胡星星. 光泵磁力仪频率信号高精度测定技术实现[J]. 地震学报, 2021, 43(2):245-254,136.
|
| [16] |
He Z B, Teng Y T, Hu X X. Realization of high-precision measurement technology for frequency signal of optically pumped magnetometer[J]. Acta Seismologica Sinica, 2021, 43(2):245-254,136.
|
| [17] |
Oelsner G, IJsselsteijn R, Scholtes T, et al. Integrated optically pumped magnetometer for measurements within earth's magnetic field[J]. Physical Review Applied, 2022, 17(2):024-034.
|
| [18] |
郭璐璐. 数字锁相放大器的设计与实现[D]. 大连: 大连理工大学, 2013.
|
| [18] |
Guo L L. Design and implementation of digital lock-in amplifter[D]. Dalian: Dalian University of Technology, 2013.
|
| [19] |
杜勇. 数字滤波器的MATLAB与FPGA实现:Altera/ Verilog版[M]. 北京: 电子工业出版社, 2015.
|
| [19] |
Du Y. MATLAB and FPGA implementation of digital filter:Altera/Verilog version[M]. Beijing: Publishing House of Electronics Industry, 2015.
|
| [20] |
王梦远. 基于FPGA的IIR数字滤波器设计[D]. 南京: 东南大学, 2016.
|
| [20] |
Wang M Y. Design of IIR digital filter based on FPGA[D]. Nanjing: Southeast University, 2016.
|
| [21] |
Yao X K, Xin W, Jin Y, et al. Fast digital filter for frequency discriminator[C]// 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI),2023:456-461.
|
| [22] |
鄢建强, 崔敬忠, 缪培贤, 等. 原子磁力仪灵敏度标定方法研究[J]. 真空与低温, 2018, 24(4):259-265.
|
| [22] |
Yan J Q, Cui J Z, Miao P X, et al. Study on the sensitivity calibration method of atomic magnetometer[J]. Vacuum and Cryogenics, 2018, 24(4):259-265.
|
| [23] |
中华人民共和国国土资源部. DZ/T 0142—2010航空磁测技术规范[S]. 北京: 中国标准出版社, 2010.
|
| [23] |
Ministry of Land and Resources of the People’s Republic of China. DZ/T 0142—2010 Criterion of aeromagnetic survey[S]. Beijing: Standards Press of China, 2010.
|
| [24] |
李大明, 徐国华. 四阶差分法在高精度磁测中的应用[J]. 物探与化探, 1990, 14(1):42-46.
|
| [24] |
Li D M, Xu G H. The application of quartic exponent difference method in high-precision megnetic survey[J]. Geophysical and Geochemical Exploration, 1990, 14(1):42-46.
|
| [1] |
LI Feng-Ping, YANG Hai-Yan, DENG Ju-Zhi, TANG Hong-Zhi, LIU Xu-Hua, ZHAO Hai-Jiao. Comparison of several frequency-time transformation methods for TEM forward modeling[J]. Geophysical and Geochemical Exploration, 2016, 40(4): 743-749. |
| [2] |
JIANG Fu-yu, MENG Ling-shun, ZHANG Feng-xu, GAO Li-kun. THE APPLICATION OF CHEBYSHEV APPROXIMATION FILTER TO SEPARATING POTENTIAL ANOMALIES[J]. Geophysical and Geochemical Exploration, 2008, 32(3): 311-315. |
|
|
|
|