|
|
Simulation and analysis of frequency domain electric field response for induced polarization media |
Wan Wei1,4( ), Sun Qi-Long2, Lu Yao3 |
1. School of Geophysics and Measurement-control Technology, East China University of Technology, Nanchang 330013, China 2. School of Geophysics and Information Technology, China University of Geosciences (Beijing),Beijing 100083, China 3. GME & Geochemical Surveys, BGP, Inc., CNPC, Zhuozhou 072751,China 4. Key Laboratory of Geophysical Electromagnetic Probing Technologies of Ministry of Natural Resources of the People’s Republic of China, Langfang 065000, China |
|
|
Abstract The resistive and capacitive properties of induced polarization(IP) medium can be characterized by complex resistivity parameters that vary with frequency. To accurately and efficiently simulate the electromagnetic responses of IP media when excited by artificial sources, this study establishes a three-dimensional forward modeling framework for complex resistivity method based on the frequency-domain Maxwell's equations. The equation takes into account the impact of electromagnetic effects and is discretized using the staggered grid finite difference method. The complex globally convergent quasi-minimum residual (QMR) method is employed to solve the discretized complex linear equation system. Initially, the accuracy of the calculations is verified through a semi-analytical solution of a simple layered model. Then, Models of large-scale and deep-seated metal ore deposits and smaller-scale and shallow-buried organic matter leakage are then established, and the electric field responses of the two induced polarization models are computed at low frequency (1 Hz), medium frequency (10 Hz), and high frequency (100 Hz). The results at different frequencies for both models indicate rapid convergence of the residual norms with iteration numbers, validating the applicability and effectiveness of the algorithm. Finally, based on the computational results, the influence of capacitive characteristics of the induced polarization medium on the electric field amplitude and phase is analyzed. It is concluded that capacitive characteristics have a minimal impact on the electric field amplitude but a significant effect on the phase, and the stronger the induced polarization effect, the more pronounced the impact on the phase.
|
Received: 05 February 2024
Published: 22 July 2025
|
|
|
|
|
[1] |
Sina S, Dimitrios N, Frederick C. Complex conductivity signatures of microbial induced calcite precipitation,field and laboratory scales[J]. Geophysical Journal International, 2020, 224(3):1811-1824.
|
[2] |
马一行, 颜廷杰, 何鹏, 等. 激发极化法在覆盖区矿产勘查中的应用——以内蒙古昌图锡力锰银铅锌多金属矿勘查为例[J]. 物探与化探, 2019, 43(4):709-717.
|
[2] |
Ma Y X, Yan T J, He P, et al. Exploration in coverage area:A case study of the Changtuxili Mn-Ag-Pb-Zn polymetallic ore deposit,Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2019, 43(4):709-717.
|
[3] |
Alfouzan F, Alotaibi A, Cox L, et al. Spectral induced polarization survey with distributed array system for mineral exploration:Case study in Saudi Arabia[J]. Minerals, 2020, 10(9):769.
|
[4] |
Xing L, Niu J, Zhang S, et al. Experimental study on hydrate saturation evaluation based on complex electrical conductivity of porous media[J]. Journal of Petroleum Science and Engineering, 2022,208:109539.
|
[5] |
Revil A, Vaudelet P, Su Z, et al. Induced polarization as a tool to assess mineral deposits:A review[J]. Minerals, 2022, 12(5):571.
|
[6] |
丁学振, 李予国, 刘颖. 激电效应对海洋可控源电磁响应的影响[J]. 石油地球物理勘探, 2018, 53(6):1341-1350.
|
[6] |
Ding X Z, Li Y G, Liu Y. Influence of IP Effecs on marine controlled-source electromagnetic responses[J]. Oil Geophysical Prospecting, 2018, 53(6):1341-1350.
|
[7] |
钟华, 唐新功. CSAMT一维正演可视化设计与激发极化效应[J]. 物探与化探, 2022, 46(2):459-466.
|
[7] |
Zhong H, Tang X G. Visualization design of 1D CSAMT forward modeling and research on the induced polarization effect[J]. Geophysical and Geochemical Exploration, 2022, 46(2):459-466.
|
[8] |
董莉, 李帝铨, 江沸菠. 改进混合蛙跳算法的CSAMT信号激电信息提取研究[J]. 地球物理学报, 2017, 60(8):3264-3277.
|
[8] |
Dong L, Li D Q, Jiang F B. A new methond based on improved SFLA for IP information extraction from CSAMT signal[J]. Chinese Journal of Geophysics, 2017, 60(8):3264-3277.
|
[9] |
Porté J, Bretaudeau F, Girard J F. 3D complex resistivity imaging using controlled source electromagnetic data:A multistage procedure using a second order polynomial parametrization[J]. Geophysical Journal International, 2023, 233(2):839-860.
|
[10] |
徐凯军, 李猛. 基于自适应有限元的复电阻率法2.5维复杂构造电磁场模拟[J]. 地球物理学报, 2018, 61(7):3102-3111.
|
[10] |
Xu K J, Li M. 2.5D simulation of the electromagnetic field with complicated structure in the complex resistivity method using adaptive finite element[J]. Chinese Journal of Geophysics, 2018, 61(7):3102-3111.
|
[11] |
曹金华, 李桐林, 刘永亮, 等. 激电和电磁效应对三维复电阻率正演结果的影响研究[J]. 地球物理学进展, 2017, 32(2):579-583.
|
[11] |
Cao J H, Li T L, Liu Y L, et al. Study on the influence of IP and EM effects of 3D resistivity modeling results[J]. Progress in Geophysics, 2017, 32(2):579-583.
|
[12] |
殷长春, 缪佳佳, 刘云鹤, 等. 时间域航空电磁法激电效应对电磁扩散的影响[J]. 地球物理学报, 2016, 59(12):4710-4719.
|
[12] |
Yin C C, Miao J J, Liu Y H, et al. The effect of induced polarization on time-domain airborne EM diffusion[J]. Chinese Journal of Geophysics, 2016, 59(12):4710-4719.
|
[13] |
Kaminski V, Viezzoli A. Modeling induced polarization effects in helicopter time-domain electromagnetic data:Field case studies[J]. Geophysics, 2017, 82(2):B49-B61.
|
[14] |
Günther T, Martin T. Spectral two-dimensional inversion of frequency-domain induced polarisation data from a mining slag heap[J]. Journal of Applied Geophysics, 2016,135:436-448.
|
[15] |
龙秀洁, 陈汉波, 莫亚军, 等. 基于Fractal模型的复电阻率法2.5D有限元数值模拟[J]. 物探与化探, 2022, 46(4):887-896.
|
[15] |
Long X J, Chen H B, Mo Y J, et al. Fractal model-based 2.5D finite element modeling of complex resistivity method[J]. Geophysical and Geochemical Exploration, 2022, 46(4):887-896.
|
[16] |
Commer M, Newman G, Williams K, et al. 3D induced-polarization data inversion for complex resistivity[J]. Geophysics, 2011, 76(3):F157-F171.
|
[17] |
刘寄仁, 汤井田, 任政勇, 等. 基于Lanczos-模型降阶算法的三维频率域可控源电磁快速正演[J]. 地球物理学报, 2022, 65(6):2326-2339.
|
[17] |
Liu J R, Tang J T, Ren Z Y, et al. Fast 3D forward modeling of frequency domain controlled-source electromagnetic method using Lanczos-model order reduction algorithm[J]. Chinese Journal of Geophysics, 2022, 65(6):2326-2339.
|
[18] |
赵宁, 王绪本, 秦策, 等. 三维频率域可控源电磁反演研究[J]. 地球物理学报, 2016, 59(1):330-341.
|
[18] |
Zhao N, Wang X B, Qin C, et al. 3D frequency-domain CSEM inversion[J]. Chinese Journal of Geophysics, 2016, 59(1):3330-341.
|
[19] |
Smith J T. Conservative modeling of 3D electromagnetic fields,Part II,biconjugate gradient solution and an accelerator[J]. Geophysics, 1996, 61(5):1319-1324.
|
[20] |
Miki Y, Washizawa T. A2ILU:Auto-accelerated ILU Preconditioner for Sparse Linear Systems[J]. SIAM Journal on Scientific Computing, 2013, 35(2):A1212-A1232.
|
[21] |
Freund R W, Nachtigal N M. QMR:A quasi-minimal residual method for non-Hermitian linear systems[J]. Numerische Mathematik, 1991, 60,315-339.
|
[22] |
王茂晓, 李胜坤. 复矩阵方程的复全局QMR算法[J]. 成都信息工程大学学报, 2020, 35(2):248-252.
|
[22] |
Wang M X, Li S K. Complex global QMR Algorithm for the complex matrix equations[J]. Journal of Chengdu University of the Information Technology, 2020, 35(2):248-252.
|
[23] |
Key K. 1D inversion of multicomponent,multifrequency marine CSEM data:Methodology and synthetic studies for resolving thin resistive layers[J]. Geophysics, 2009, 74(2):F9-F20.
|
[24] |
王泽亚, 徐亚, 能昌信, 等. 海滨垃圾填埋场渗滤液污染土壤的复电阻率特性[J]. 环境科学研究, 2020, 33(4):1021-1027.
|
[24] |
Wang Z Y, Xu Y, Neng C X, et al. Complex resistivity properties of leachate-contaminated soil coastal landfill[J]. Research of Environmental Sciences, 2020, 33(4):1021-1027.
|
[25] |
张振宇, 许伟伟, 邓亚平, 等. 三氯乙烯污染土壤的复电阻率特征和频谱参数研究[J]. 地学前缘, 2021, 28(5):114-124.
|
[25] |
Zhang Z Y, Xu W W, Deng Y P, et al., Complecx resistivity properties and spectral parameters of TCE contaminated soils[J]. Earth Science Frontiers, 2021, 28(5):114-124.
|
[26] |
Revil A, Coperey A, Shao Z, et al. Complex conductivity of soils[J]. Water Resources Research, 2017, 53,7121-7147.
|
[27] |
刘豪睿, 孙亚坤, 能昌信, 等. 铬污染土壤复电阻率频散特性[J]. 物探与化探, 2010, 34(3):372-375.
|
[27] |
Liu H R, Sun Y K, Nai C X, et al. The complex dispersion properties of the chrome-contaminated soil[J]. Geophysical and Geochemical Exploration, 2010, 34(3):372-375.
|
[1] |
KANG Li-Li, YANG Yong-You, WANG Zhong-Xing, CHEN Kai, HE Peng, WANG Xu-Zhe, DING Gu-Qiao, LI Zi-Hang. R&D and tests of a graphene-based electric field sensor[J]. Geophysical and Geochemical Exploration, 2024, 48(6): 1463-1470. |
[2] |
JIANG Zhi-Qiang, LIN Chao, YANG Ting-Wei, NING Xiao-Bin. Forward modeling of a controllable-source 3D electromagnetic method based on fictitious wave field[J]. Geophysical and Geochemical Exploration, 2024, 48(5): 1348-1358. |
|
|
|
|