|
|
Semi-supervised learning inversion of data derived from high-resolution electrical resistivity tomography based on forward modeling constraints |
LI Guo-Hao1,2,3( ), LYU Yu-Zeng1( ), DONG Yi-Fan1, YU Hai-Tao2,3 |
1. College of Earth Sciences, Guilin University of Technology, Guilin 541004, China 2. Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510500, China 3. Guangdong Construction Engineering Quality & Safety Testing Head Station Co., Ltd., Guangzhou 510500, China |
|
|
Abstract Supervised deep learning inversion relies on labels of subsurface media for training. However, the measured data from electrical resistivity tomography usually lack such labels. Supervised learning based on significant synthetic data generated through forward modeling fails to obtain reliable inversion results for complex data outside the training set. This study proposed a semi-supervised learning inversion method based on forward modeling constraints, combining with labeled and unlabeled data for training, to enhance the inversion accuracy and the capability to characterize complex geological structures. The inversion results of synthetic data demonstrate the strong generalization capability of the proposed method. The inversion results of measured data indicate that compared to conventional least-squares inversion, semi-supervised inversion provides higher resolution and particularly more accurate characterization of vertical lithological boundaries. Overall, the proposed method offers a novel approach for the inversion of the data derived from high-resolution electrical resistivity tomography.
|
Received: 21 October 2024
Published: 22 July 2025
|
|
|
|
|
|
Semi-supervised learning inversion flowchart
|
|
DualChannel architecture
|
|
DualChannelUNet architecture
|
|
Synthetic electrical dataset model
|
|
Change curve of quantitative evaluation indicators
|
|
Synthetic data inversion result comparison
|
|
Field data and inversion results of the Shaodong water exploration project
|
[1] |
吕玉增, 程一鸣, 卢光辉, 等. 综合物探技术在桂西沉积型铝土矿勘查中的应用[J]. 矿产与地质, 2023, 37(5):1039-1045.
|
[1] |
Lyu Y Z, Cheng Y M, Lu G H, et al. Application of comprehensive geophysical prospecting technology in the exploration of sedimentary bauxite deposits in West Guangxi[J]. Mineral Resources and Geology, 2023, 37(5):1039-1045.
|
[2] |
张巍, 周瑜琨, 刘立岩, 等. 跨孔电阻率法在城市输水管道渗漏监测中的应用[J]. 物探与化探, 2024, 48(3):884-890.
|
[2] |
Zhang W, Zhou Y K, Liu L Y, et al. Application of the cross-borehole resistivity method in the monitoring of leakage for urban water supply pipelines[J]. Geophysical and Geochemical Exploration, 2024, 48(3):884-890.
|
[3] |
陈学群, 李成光, 田婵娟, 等. 高密度电阻率法在咸水入侵监测中的应用[J]. 物探与化探, 2021, 45(5):1347-1353.
|
[3] |
Chen X Q, Li C G, Tian C J, et al. The application of high density electrical resistivity method to monitoring saltwater intrusion[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1347-1353.
|
[4] |
姜国庆, 郝社锋, 喻永祥, 等. 基于三维电阻率反演的滑坡地质灾害调查——以无锡市雪浪山景区滑坡为例[J]. 物探与化探, 2024, 48(6):1720-1729.
|
[4] |
Jiang G Q, Hao S F, Yu Y X, et al. Landslide survey based on three-dimensional resistivity inversion:A case study of the Xuelang Mountain scenic spot,Wuxi,China[J]. Geophysical and Geochemical Exploration, 2024, 48(6):1720-1729.
|
[5] |
戴田宇, 谢尚平. 高密度电阻率法在葬墓考古的应用[J]. 地球物理学进展, 2015, 30(6):2885-2891.
|
[5] |
Dai T Y, Xie S P. Application of resistivity technigue in the relic archaeology[J]. Progress in Geophysics, 2015, 30(6):2885-2891.
|
[6] |
Monteiro S F A, Sultan S A, Represas P, et al. Joint inversion of gravity and geoelectrical data for groundwater and structural investigation:Application to the northwestern part of Sinai,Egypt[J]. Geophysical Journal International, 2006, 165(3):705-718.
|
[7] |
程勃, 丁彦礼, 徐志锋. 统计学建模法在面积性高密度电阻率数据反演中的应用[J]. 桂林理工大学学报, 2016, 36(3):452-457.
|
[7] |
Cheng B, Ding Y L, Xu Z F. Statistic modeling 2D inversion application in parallel resistivity survey lines[J]. Journal of Guilin University of Technology, 2016, 36(3):452-457.
|
[8] |
赵涛, 于师建. 基于GA-BP神经网络算法的高密度电法非线性反演[J]. 煤田地质与勘探, 2017, 45(2):147-151.
|
[8] |
Zhao T, Yu S J. GA-BP neural network algorithm-based nonlinear inversion for high density resistivity method[J]. Coal Geology & Exploration, 2017, 45(2):147-151.
|
[9] |
郭谦. 基于先验约束的电阻率法探测深度学习反演方法[D]. 济南: 山东大学, 2019.
|
[9] |
Guo Q. Learning inversion method of resistivity detection depth based on prior constraint[D]. Jinan: Shandong University, 2019.
|
[10] |
刘征宇, 庞永昊, 张凤凯, 等. 基于多尺度边缘特征的深度学习电阻率反演方法[J]. 岩土力学, 2023, 44(11):3299-3306.
|
[10] |
Liu Z Y, Pang Y H, Zhang F K, et al. Deep learning resistivity inversion method based on multi-scale edge features[J]. Rock and Soil Mechanics, 2023, 44(11):3299-3306.
|
[11] |
宋磊, 印兴耀, 宗兆云, 等. 基于先验约束的深度学习地震波阻抗反演方法[J]. 石油地球物理勘探, 2021, 56(4):716-727,670.
|
[11] |
Song L, Yin X Y, Zong Z Y, et al. Deep learning seismic impedance inversion based on prior constraints[J]. Oil Geophysical Prospecting, 2021, 56(4):716-727,670.
|
[12] |
韩宏伟, 刘浩杰, 桑文镜, 等. 基于半监督学习的井震联合储层横向孔隙度预测方法[J]. 地球物理学报, 2022, 65(10):4073-4086.
|
[12] |
Han H W, Liu H J, Sang W J, et al. Seismic and well logs integration for reservoir lateral porosity prediction based on semi-supervised learning[J]. Chinese Journal of Geophysics, 2022, 65(10):4073-4086.
|
[13] |
罗仁昱, 陈继锋, 尹欣欣. 机器学习在地震事件自动检测中的应用综述[J]. 地球物理学进展, 2021, 36(3):923-932.
|
[13] |
Luo R Y, Chen J F, Yin X X. Review of the applications of machine learning in automatic detection of seismic events[J]. Progress in Geophysics, 2021, 36(3):923-932.
|
[14] |
Laine S, Aila T M. Temporal ensembling for semi-supervised learning[EB/OL].2016:1610.02242.
|
[15] |
Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing, 2015.
|
[16] |
高好天, 孙宁娜, 孙可奕, 等. DnCNN和U-Net对地震随机噪声压制的对比分析[J]. 地球物理学进展, 2021, 36(6):2441-2453.
|
[16] |
Gao H T, Sun N N, Sun K Y, et al. Comparative analysis of DnCNN and U-Net on suppression of seismic random noise[J]. Progress in Geophysics, 2021, 36(6):2441-2453.
|
[17] |
Lou A G, Guan S Y, Loew M H. DC-UNet:Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation[C]// Medical Imaging 2021:Image Processing.February 15-20, 2021. Online Only,USA.SPIE,2021:98.
|
[18] |
Kingma D P, Ba J, Hammad M M. Adam: A method for stochastic optimization[EB/OL].2014:1412.6980.
|
[19] |
Peng C, Gou W, Liu G. Ray-tracing-based input data selection RTM-A target oriented approach for clearer subsalt image[C]// Proceedings.June 1-4,2015.Madrid,Spain.EAGE Publications BV, 2015.
|
|
|
|