|
|
A numerical simulation study on array acoustic logging of fractured granite reservoirs in buried hills |
DU Wei-Yi1,2( ), ZHANG Chong1,2( ), HAN Hua-Yang1,2, ZHAO Teng-Teng1,2, ZHANG Wen-Yi1,2 |
1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China 2. College of Geophysics and Petroleum Resources, Yangtze University, Wuhan 430100, China |
|
|
Abstract The buried-hill reservoirs in the Qiongdongnan Basin of the South China Sea exhibit intricate reservoir spaces and numerous fractures, leading to their pronounced heterogeneity. Since granite sediments spread across the study area, it is critical to effectively evaluate the development of fractures in granite reservoirs. Based on the COMSOL Multiphysics software and the finite element method, this study simulated the use of array acoustic logging to detect granite reservoirs with different widths, dip angles, and lengths, summarizing the response characteristics of fractures in different development states. The results are as follows: (1) Shear waves in fractured formations are subjected to non-significant influence of fracture widths, and their attenuation is inversely proportional to fracture dip angles and directly proportional to fracture lengths; (2) Stoneley waves manifest significant response to the changes in fracture widths, dip angles, and lengths, and their attenuation is proportional to both fracture widths and dip angles; (3) The attenuation of Stoneley waves is directly proportional to fracture lengths below 0.1 m but shows subtle response to fracture lengths above 0.1 m. The results of this study provide a basis for determining the development state of fractures in granite reservoirs using the array acoustic log method.
|
Received: 15 June 2023
Published: 16 April 2024
|
|
Corresponding Authors:
ZHANG Chong
E-mail: 1079396023@qq.com;yzlogging@163.com
|
|
|
|
|
Schematic diagram of crack-containing model
|
材料设置 | 密度/ (kg·m-3) | 声速/ (m·s-1) | 杨氏模 量/Pa | 泊松比 | 地层 井眼 裂缝 | 2600 1000 1000 | 5000 1500 1500 | 6×1010 0 0 | 0.5 0.25 0.25 |
|
Material parameters of the model
|
|
Waveform diagram of model with cracks
|
|
Relationship between crack width and sound pressure attenuation
|
|
Relationship between crack inclination and sound pressure
|
|
Relationship between crack length and sound pressure attenuation
|
|
Relationship between crack width and stoneley wave attenuation
|
|
Relationship between crack inclination and transverse and Stoneleigh waves
|
|
Relationship between crack length (<0.1m) and transverse and Stoney waves
|
|
Relationship between crack length (>0.1m) and transverse wave
|
[1] |
陈建军, 马艳萍, 陈建中, 等. 南海北部陆缘盆地形成的构造动力学背景[J]. 地学前缘, 2015, 22(3):38-47.
|
[1] |
Chen J J, Ma Y P, Chen J Z, et al. Tectonic dynamics of northern continental margin basins in South China Sea[J]. Earth Science Frontiers, 2015, 22(3):38-47.
|
[2] |
李鸿明. 琼东南盆地松南低凸起中生代花岗岩潜山储层特征及控制因素分析[D]. 长春: 吉林大学, 2022.
|
[2] |
Li H M. Analysis of the characteristics and control factors of the Mesozoic granite buried hill reservoir in the Songnan low uplift of the Qiongdongnan Basin[D]. Changchun: Jilin University, 2022.
|
[3] |
陈宏达, 于福华. 渤海西部曹妃甸1-6花岗岩潜山油藏的发现[J]. 中国海上油气地质, 1995, 7(2):35-39.
|
[3] |
Chen H D, Yu F H. Discovery of CFD1-6 granite buried-hill oil pool in western Bohai area[J]. China Offshore Oil and Gas, 1995, 7(2):35-39.
|
[4] |
窦立荣, 魏小东, 王景春, 等. 乍得Bongor盆地花岗质基岩潜山储层特征[J]. 石油学报, 2015, 36(8):897-904,925.
|
[4] |
Dou L R, Wei X D, Wang J C, et al. Characteristics of granitic basement rock buried-hill reservoir in Bongor Basin,Chad[J]. Acta Petrolei Sinica, 2015, 36(8):897-904,925.
|
[5] |
甘军, 梁刚, 李兴, 等. 琼东南盆地梅山组海底扇天然气成因类型及成藏模式[J]. 地质学报, 2022, 96(3):1069-1078.
|
[5] |
Gan J, Liang G, Li X, et al. Genetic types and accumulation model of submarine fan gas in the Meishan Formation,Qiongdongnan Basin[J]. Acta Geologica Sinica, 2022, 96(3):1069-1078.
|
[6] |
汤婧, 宋来明, 梁旭, 等. 渤海湾盆地花岗岩潜山油田裂缝发育特征厘定[C]// 2019油气田勘探与开发国际会议论文集. 西安: 西安石油大学,陕西省石油学会, 2019:978-979.
|
[6] |
Tang J, Song L M, Liang Xu, et al. Determination of fracture development characteristics in granite buried hill oil fields in the Bohai Bay Basin[C]// Proceedings of the 2019 International Conference on Oil and Gas Field Exploration and Development. Xi'an: Xi'an University of Petroleum,Shaanxi Petroleum Society, 2019:978-979.
|
[7] |
Morris R L, Grine D R, Arkfeld T E. Using compressional and shear acoustic amplitudes for the location of fractures[J]. Journal of Petroleum Technology, 1964, 16(6):623-632.
|
[8] |
Paillet F L. Acoustic propagation in the vicinity of fractures which intersect a fluid-filled borehole[C]// SPWLA 21st Annual Logging Symposium,Lafayette,Louisiana,July 8-11,1980.
|
[9] |
Zlatev P, Poeter E, Higgins J. Physical modeling of the full acoustic waveform in a fractured,fluid-filled borehole[J]. Geophysics, 1988, 53(9):1219-1224.
|
[10] |
陈德华, 丛健生, 徐德龙, 等. 裂缝性地层中的井孔声场模拟[J]. 大庆石油学院学报, 2004, 28(3):4-6,13.
|
[10] |
Chen D H, Cong J S, Xu D L, et al. Simulation of the fracture formation acoustic field in boreholes[J]. Journal of Northeast Petroleum University, 2004, 28(3):4-6,13.
|
[11] |
何峰江, 陶果, 王锡莉. 贴井壁声波测井仪的有限差分模拟研究[J]. 地球物理学报, 2006, 49(3):923-928.
|
[11] |
He F J, Tao G, Wang X L. Finite difference modeling of the acoustic field by sidewall logging devices[J]. Chinese Journal of Geophysics, 2006, 49(3):923-928.
|
[12] |
魏周拓, 陈雪莲, 范宜仁, 等. 井旁裂缝的声场模拟及反射波提取方法[J]. 石油地球物理勘探, 2010, 45(5):748-756,792,622-623.
|
[12] |
Wei Z T, Chen X L, Fan Y R, et al. Sonic field simulation for borehole-side fracture and reflection wave extraction method[J]. Oil Geophysical Prospecting, 2010, 45(5):748-756,792,622-623.
|
[13] |
龚丹, 章成广. 裂缝性致密砂岩储层声波测井数值模拟响应特性研究[J]. 石油天然气学报, 2013, 35(7):82-86,3.
|
[13] |
Gong D, Zhang C G. Research on numerical simulation response characteristics of acoustic logging for fractured tight sandstone reservoirs[J]. Journal of Oil and Gas Technology, 2013, 35(7):82-86,3.
|
[14] |
Matuszyk P J, Torres-Verdin C, Pardo D. Frequency-domain finite-element simulations of 2D sonic wireline borehole measurements acquired in fractured and thinly bedded formations[J]. Geophysics, 2013, 78(4):D193-D207.
|
[15] |
阎守国, 谢馥励, 龚丹, 等. 含有倾斜薄裂缝孔隙地层中的井孔声场[J]. 地球物理学报, 2015, 58(1):307-317.
|
[15] |
Yan S G, Xie F L, Gong D, et al. Borehole acoustic fields in porous formation with tilted thin fracture[J]. Chinese Journal of Geophysics, 2015, 58(1):307-317.
|
[16] |
闫怡飞, 赵云, 宋胜利, 等. 基于反射声波测井有限元方法的井旁裂缝分布特征[J]. 中国石油大学学报:自然科学版, 2018, 42(3):57-63.
|
[16] |
Yan Y F, Zhao Y, Song S L, et al. Near wellbore fracture distribution characteristics based on acoustic reflection logging finite element method[J]. Journal of China University of Petroleum:Edition of Natural Science, 2018, 42(3):57-63.
|
[17] |
刘黎, 章成广, 蔡明, 等. 裂缝对井眼声波的传播影响规律研究[J]. 物探与化探, 2019, 43(6):1333-1340.
|
[17] |
Liu L, Zhang C G, Cai M, et al. Studies on the effec of crack on the propagation of acoustic waves in wellbore[J]. Geophysical and Geochemica Exploration, 2019, 43(6):1333-1340.
|
[18] |
欧伟明, 王祝文, 宁琴琴, 等. 基于线性滑动模型的裂缝性地层声波测井响应数值模拟[J]. 中国石油大学学报:自然科学版, 2019, 43(3):56-64.
|
[18] |
Ou W M, Wang Z W, Ning Q Q, et al. Numerical simulation of acoustic logging in fractured formation based on linear-slip model[J]. Journal of China University of Petroleum:Edition of Natural Science, 2019, 43(3):56-64.
|
[19] |
车小花, 赵腾, 乔文孝, 等. 多极子声波测井的裂缝识别与评价[J]. 石油与天然气地质, 2020, 41(6):1263-1272.
|
[19] |
Che X H, Zhao T, Qiao W X, et al. Fracture identification and evaluation based on multi-pole acoustic logging[J]. Oil & Gas Geology, 2020, 41(6):1263-1272.
|
[20] |
曹鸿飞, 章成广, 蔡明, 等. 粗糙裂缝对井眼声波传播的影响[J]. 科学技术与工程, 2022, 22(23):9947-9954.
|
[20] |
Cao H F, Zhang C G, Cai M, et al. Data influence of rough crack on borehole acoustic wave propagation[J]. Science Technology and Engineering, 2022, 22(23):9947-9954.
|
[21] |
张波, 李超, 张晋言, 等. 三维声波测井探测特性分析与处理技术应用[J]. 应用声学, 2021, 40(5):774-784.
|
[21] |
Zhang B, Li C, Zhang J Y, et al. Analysis of detecting characteristics and application of data processing technology for 3D array acoustic logging[J]. Journal of Applied Acoustics, 2021, 40(5):774-784.
|
[22] |
向旻. 裂缝性地层声波全波列测井时频特征研究[D]. 长春: 吉林大学, 2016.
|
[22] |
Xiang M. Study on time-frequency characteristics of acoustic full wave logging in fractured formations[D] Changchun: Jilin University, 2016.
|
[23] |
陈乔, 刘向君, 梁利喜, 等. 裂缝模型声波衰减系数的数值模拟[J]. 地球物理学报, 2012, 55(6):2044-2052.
|
[23] |
Chen Q, Liu X J, Liang L X, et al. Numerical simulation of the fractured model acoustic attenuation coefficient[J]. Chinese Journal of Geophysics, 2012, 55(6):2044-2052.
|
[24] |
杜光升, 乔文孝, 王耀俊. 用有限元法计算井中水平裂缝的反射斯通利波[J]. 石油大学学报:自然科学版, 2000, 24(1):95-97,1.
|
[24] |
Du G S, Qiao W X, Wang Y J. Computation of reflected stoneley wave at a horizontal fractures using finite element method[J]. Journal of the University of Petroleum,China, 2000, 24(1):95-97,1.
|
[25] |
帕尔哈提·祖努, 齐兴华, 安然, 等. 裂缝性煤层声波测井响应的有限元模拟研究[J]. 煤炭技术, 2022, 41(6):59-62.
|
[25] |
Paerhati Z N, Qi X H, An R, et al. Finite element simulation of acoustic logging response in fractured coal seams[J]. Coal Technology, 2022, 41(6):59-62.
|
[26] |
齐兴华, 向旻, 安然, 等. 煤层发育状况的单极子声波测井响应数值模拟[J]. 煤炭技术, 2022, 41(7):68-71.
|
[26] |
Qi X H, Xiang M, An R, et al. Numerical simulation of monopole acoustic logging response to coal seam development[J]. Coal Technology, 2022, 41(7):68-71.
|
[1] |
LIANG Zhi-Qiang, LI Hong. Comparison and summary of different azimuthal anisotropy-based inversion techniques[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 443-450. |
[2] |
ZHANG Jing, WANG Yong, ZHAO Hui-Yan, HENG De, HUANG Jun, ZHANG Xiao-Dan, WANG Wen-Wen, HE Yan-Bing. Prestack seismic inversion of fluid factors in fractured reservoirs based on the global adaptive MCMC algorithm[J]. Geophysical and Geochemical Exploration, 2024, 48(1): 105-112. |
|
|
|
|