|
|
Spatio-temporal combined ground-penetrating radar clutter suppression based on empirical mode decomposition and Karhunen-Loeve transform |
SHAO Quan-Jie( ), SUN Ling-Zhi |
Qingdao Civil Aviation Cares Co.,Ltd.,Qingdao 266000,China |
|
|
Abstract Due to factors such as environment,the signals received by ground-penetrating radar (GPR) contain various clutter interference,posing high challenges in subsurface anomaly interpretation and late-stage imaging.Clutter,primarily including noise,antenna-coupled waves,and surface direct waves,cannot be eliminated effectively using single data processing methods.Hence,this study proposed a spatiotemporal combined clutter suppression method. In the temporal dimension,threshold processing based on empirical mode decomposition(EMD) was applied to the data of all survey points in the echo profile,achieving effective noise removal.In the spatial dimension,the Karhunen-Loeve(KL) transform was employed to remove residual interference in the entire radar echo profile by utilizing the correlation of target echoes and the randomness of clutter at all survey points.Both theoretical simulation and measured data processing verify that the method proposed in this study is effective in eliminating clutter and highlighting weak signals.
|
Received: 05 May 2023
Published: 16 April 2024
|
|
|
|
|
|
Ground penetrating radar receiving signal model
|
|
Original ground penetrating radar signal(a) and signal after noise processing(b)
|
|
IMF1~IMF8 after EMD decomposition
|
|
Comparison between EMD improved threshold denoising(a) and wavelet denoising(b)
|
| SNR | RMSE | 加噪信号 | 10.058 | 0.0099 | 小波阈值去噪 | 18.9591 | 0.0036 | EMD阈值去噪 | 20.1949 | 0.0031 |
|
Comparison of SNR and RMSE
|
|
Actual measurement scenario and data processing a—actual measurement scenario;b—measured echo data;c—EMD improved threshold denoising;d—wavelet denoising
|
|
Raw data and data processing results a—original data;b—remove direct wave data;c—EMD improved threshold denoising;d—time-space two-dimensional clutter suppression
|
| 去直达波 | EMD阈值 | KL变换 | Q | 2090 | 1553 | 1099 |
|
Comparison of image entropy
|
[1] |
申家全, 闫怀志, 胡昌振. 基于图像熵的探地雷达杂波抑制效果评价[J]. 电波科学学报, 2011, 26(2):267-271,413.
|
[1] |
Shen J Q, Yan H Z, Hu C Z. Evaluation method based on image entropy for clutter suppression effect of ground-penetrating radar[J]. Chinese Journal of Radio Science, 2011, 26(2):267-271,413.
|
[2] |
石显新, 杨秋芬, 侯彦威. 二维物理小波标架去除探地雷达信号随机噪声[J]. 电波科学学报, 2012, 27(6):1186-1192,1268.
|
[2] |
Shi X X, Yang Q F, Hou Y W. Eliminating random noise interference of ground penetrating radar signal by resorting to 2-D physical wavelet fame[J]. Chinese Journal of Radio Science, 2012, 27(6):1186-1192,1268.
|
[3] |
吴宝杰, 杨桦, 张伟光. 探地雷达数据的S变换时频分析[J]. 上海地质, 2008, 107(3):13-15,19.
|
[3] |
Wu B J, Yang H, Zhang W G. S transform time-frequency analysis of GPR data[J]. Shanghai Geology, 2008, 107(3):13-15,19.
|
[4] |
Huang N E, Wu M L C, Long S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society of London Series A:Mathematical,Physical and Engineering Sciences,2003, 459(2037):2317-2345.
|
[5] |
Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2):112-114.
|
[6] |
易洪春, 刘树才, 贺克升, 等. 基于 EMD 去噪方法研究及其在地质勘探中的应用[J]. 物探与化探, 2013, 37(3):533-537.
|
[6] |
Yi H C, Liu S C, He K S, et al. Data denoising based on EMD and its ap-plication to geological exploration[J]. Geophysical and Geochemical Explora-tion, 2013, 37(3):533-537.
|
[7] |
冯德山, 戴前伟, 余凯. 基于经验模态分解的低信噪比探地雷达数据处理[J]. 中南大学学报:自然科学版, 2012, 43(2):596-604.
|
[7] |
Feng D S, Dai Q W, Yu K. GPR signal processing under low SNR based on empirical mode decomposition[J]. Journal of Central South University:Science and Technology, 2012, 43(2):596-604.
|
[8] |
Tesfamariam, Gebremichael T, Mali D, et al. Clutter reduction techniques for GPR based buried landmine detection[C]// Thuckalay:2011 International Conference on Signal Processing,Communication,Computing and Networking Technologies.IEEE, 2011:182-186.
|
[9] |
Khan U S, Al-Nuaimy W. Background removal from GPR data using Eigenvalues[C]// Lecce: Proceedings of the XIII Internarional Conference on Ground Penetrating Radar.IEEE, 2010:1-5.
|
[10] |
申家全, 闫怀志, 胡昌振. 基于主成分自动选择准则的探地雷达杂波抑制[J]. 电波科学学报, 2010, 25(1):83-87.
|
[10] |
Shen J Q, Yan H Z, Hu C Z. Auto-selected rule on principal component analysis in ground penetrating radar signal denoising[J]. Chinese Journal of Radio Science, 2010, 25(1):83-87.
|
[11] |
Solimene R, Cuccaro A, Dell’Aversano A, et al. Ground clutter removal in GPR surveys[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3):792-798.
|
[12] |
Wu Z H, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society of London Series A:Mathematical,Physical and Engineering Sciences,2004, 460(2046):1597-1611.
|
[13] |
Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3):613-627.
|
[14] |
杨天春, 张辉, 李好. 探地雷达信号的 KL 变换处理分析[J]. 湖南科技大学学报:自然科学版, 2013, 28(2):66-69.
|
[14] |
Yang T C, Zhang H, Li H. Signal processing of ground penetrating radar by KL transform[J]. Journal of Hunan University of Science & Technology:Natural Science Edition, 2013, 28(2):66-69.
|
[1] |
WU Song, NING Xiao-Bin, YANG Ting-Wei, JIANG Hong-Liang, LU Chao-Bo, SU Yu-Di. Neural network-based denoising for ground-penetrating radar data[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1298-1306. |
[2] |
ZENG Bo, LIU Shuo, YANG Jun, FENG De-Shan, YUAN Zhong-Ming, LIU Jie, WANG Xun. Influence of surface undulations on GPR-based underground pipeline detection[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1064-1070. |
|
|
|
|