|
|
Effects of seawater layer on seismic reflection characteristics |
DU Yi-Jing( ), SUN Cheng-Yu( ), WANG Zhi-Nong, CAI Rui-Qian, WANG Sheng-Rong, JIAO Jun-Feng |
School of Geosciences,China University of Petroleum(East China),Qingdao 266580,China |
|
|
Abstract In marine seismic exploration,seismic reflection characteristics play an important role in AVO analysis,inversion for seabed parameters,and structural analysis.When seismic waves propagate in the ocean,their seismic reflection characteristics are affected by the seawater layer and the sediments beneath the seabed.However,previous studies mainly focus on the influence of the sediments beneath the seabed,while there is a lack of studies on the effects of the seawater layer on the seismic reflection characteristics.This study analyzed the changes in the seismic wave field during the seismic wave propagation in the seawater layer.Based on the boundary conditions of fluid-solid and free interfaces,this study derived the P-P amplitude ratio between the incident and reflected waves on an elastic interface and obtained the mathematical expression of the seawater layer effect accordingly.Then,this study analyzed the influencing factors,such as the frequency of incident waves,the depth of the seawater layer,the impedance contrast of the seabed,and the incident angle,on the filtering effect of the seawater layer.The analysis results are as follows:The seawater layer had a periodic frequency selective filtering effect on seismic P-waves;The period of the frequency selective filtering effect was inversely proportional to the frequency of incident waves and the depth of the seawater layer and was directly proportional to the incident angle;A higher incident angle corresponded to severer attenuation of seismic P-waves;The effects of impedance contrast on amplitude was related to the frequency of incident waves and the depth of the seawater layer.Finally,the study verified the effects of the seawater layer on seismic reflection characteristics through numerical simulations.
|
Received: 02 August 2022
Published: 05 July 2023
|
|
|
|
|
|
Ocean model of downstream wavefield
|
|
Ocean model of upload wavefield
|
| 深度/m | 纵波速度/ (m·s-1) | 横波速度/ (m·s-1) | 密度/ (g·cm-3) | 海水层 | h | 1 500 | 0 | 1 | 海底 | | 1 800 | 800 | ρ |
|
Model parameters
|
|
Amplitude frequency response curve with incident wave frequency
|
|
Amplitude frequency response curve with seawater depth
|
|
Amplitude frequency response curve with seafloor impedance difference
|
|
Amplitude frequency response curve of different incident wave frequencies with incident angle
|
|
Amplitude frequency response curve of different seawater depths with incident angle
|
|
Amplitude frequency response curve of different seafloor impedance differences with incident angle
|
|
Seismic recording spectrum with weak impedance difference
|
|
Seismic recording spectrum with strong impedance difference
|
[1] |
孟祥羽. 复杂海洋声学环境下的反射地震响应及相关处理方法研究[D]. 长春: 吉林大学, 2021.
|
[1] |
Meng X Y. Research on reflection seismic data's response and related processing methods in complicated ocean acoustic environment[D]. Changchun: Jilin University, 2021.
|
[2] |
戚宾, 王祥春, 赵庆献. 海洋电火花震源地震勘探研究进展[J]. 物探与化探, 2020, 44(1):107-111.
|
[2] |
Qi B, Wang X C, Zhao Q X. Research on the progress of marine sparker seismic exploration[J]. Geophysical and Geochemical Exploration, 2020, 44(1):107-111.
|
[3] |
Amundsen L, Reitan A. Decomposition of multicomponent sea-floor data into upgoing and downgoing P- and S-waves[J]. Geophysics, 1995, 60(2):563-572.
|
[4] |
Amundsen L, Reitan A. Estimation of sea-floor wave velocities and density from pressure and particle velocity by AVO analysis[J]. Geophysics, 1995, 60(5):1575-1578.
|
[5] |
Badiey M, Jaya I, Cheng H D. Propagator matrix for plane wave reflection from inhomogeneous anisotropic poroelastic seafloor[J]. Journal of Computational Acoustics, 1994, 2(1):11-27.
|
[6] |
Badiey, Mohsen. Deterministic and stochastic analyses of acoustic plane-wave reflection from inhomogeneous porous seafloor[J]. The Journal of the Acoustical Society of America, 1996, 99(2):903-913.
|
[7] |
Denneman A, Drijkoningen G G, Smeulders D, et al. Reflection and transmission of waves at a fluid/porous-medium interface[J]. Geophysics, 2002, 67(1):282-291.
|
[8] |
阮爱国, 李家彪, 初凤友, 等. 海底天然气水合物层界面反射AVO 数值模拟[J]. 地球物理学报, 2006, 49(6):1826-1835.
|
[8] |
Ruan A G, Li J B, Chu F Y, et al. AVO numerical simulation of gas hydrate reflectors beneath seafloor[J]. Chinese Journal of Geophysics, 2006, 49(6):1826-1835.
|
[9] |
Chen W Y, Wang Z H, Zhao K, et al. Reflection of acoustic wave from the elastic seabed with an overlying gassy poroelastic layer[J]. Geophysical Journal International, 2015, 203:213-227.
|
[10] |
郑广学, 祝捍皓, 朱军. 由贝叶斯理论和传播损失反演海底参数[C]// 2018年全国声学大会论文集, 2018:70-71.
|
[10] |
Zheng G X, Zhu H H, Zhu J. Geo-acoustic parameter inversion by Bayesian theory and transmission loss[C]// Proceedings of the 2018 National Acoustics Conference, 2018:70-71.
|
[11] |
张海刚. 具有弹性海底的海洋环境中声场计算研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.
|
[11] |
Zhang H G. Research on sound field computation in the ocean environment with elastic bottom[D]. Harbin:Harbin Engineering University, 2006.
|
[12] |
Liu Y T, Liu X W, Umberta, et al. An inversion method for seafloor elastic parameters[J]. Geophysics, 2015, 80(3):N11-N21.
|
[13] |
Liu Y T, Liu X W. Seafloor elastic parameters estimation based on AVO inversion[J]. Marine Geophysical Research, 2015, 36(4):335-342.
|
[14] |
Zhang G, Hao C, Chen Y. Analytical study of the reflection and transmission coefficient of the submarine interface[J]. Acta Geophysica, 2018, 66(4):449-460.
|
[15] |
刘洋廷. AVO理论在海底弹性参数反演中的应用研究[D]. 北京: 中国地质大学(北京), 2017.
|
[15] |
Liu Y T. A study on the application of AVO theory in seafloor elastic parameters estimation[D]. Beijing: China University of Geosciences(Beijiing), 2017.
|
[16] |
王维佳. 弹性波在海底多分量记录上的特征[J]. 石油地球物理勘探, 2000, 35(2):139-146.
|
[16] |
Wang W J. Essential characteristic of elastic waves in ocean bottom multicomponent seismograms[J]. Oil Geophysical Prospecting, 2000, 35(2):139-146.
|
[17] |
顾汉明, 王家映, 朱光明. 频率—波数域递推计算海底多分量地震记录中的反射系数[J]. 地球物理学报, 2002, 45(2):255-262.
|
[17] |
Gu H M, Wang J Y, Zhu G M. Calculation of reflection coefficient in frequency-wave-number-domain using seafloor seismic multi-component data[J]. Chinese Journal of Geophysics, 2002, 45(2):255-262.
|
[18] |
罗夏云, 程广利, 孟路稳, 等. 两种声场模型下环境参数对Scholte波传播特性的影响[J]. 海军工程大学学报, 2019, 31(3):48-54.
|
[18] |
Luo X Y, Cheng G L, Meng L W, et al. Influence of environmental parameters on Scholte wave propagation characteristics under two kinds of acoustic field model[J]. Journal of Navel University of Engineering, 2019, 31(3):48-54.
|
[19] |
Chanda A, Bora S N. Different approaches in scattering of water waves by two submerged porous plates over an elastic sea-floor[J]. Geophysical & Astrophysical Fluid Dynamics, 2022:1-28.
|
[20] |
马德志, 王炜, 金明霞, 等. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1):175-181.
|
[20] |
Ma D Z, Wang W, Jin M X, et al. Generation mechanism of ghost wave in marine seismic exploration and ghost wave attenuation from marine seismic data[J]. Geophysical and Geochemical Exploration, 2022, 46(1):175-181.
|
[21] |
张兴岩, 朱江梅, 杨薇, 等. 海洋资料多次波组合衰减技术及应用[J]. 物探与化探, 2011, 35(4):511-515.
|
[21] |
Zhang X Y, Zhu J M, Yang W, et al. Group technology of antimultiple in marine seismic data processing and its application[J]. Geophysical and Geochemical Exploration, 2011, 35(4):511-515.
|
[22] |
吴宝年. 油藏模型含油饱和度变化的地震振幅响应特征[J]. 物探与化探, 2015, 39(6):1271-1277.
|
[22] |
Wu B N. Seismic amplitude response characteristics of oil-bearing saturability variation of the oil pool model[J]. Geophysical and Geochemical Exploration, 2015, 39(6):1271-1277.
|
[23] |
孙成禹, 李振春. 地震波动力学基础[M]. 北京: 石油工业出版社, 2011.
|
[23] |
Sun C Y, Li Z C. Fundamentals of seismic wave dynamics[M]. Beijing: Petroleum Industry Press, 2011.
|
[24] |
顾汉明, 江涛, 朱培民, 等. 海底多波多分量AVO反演岩性参数的敏感性分析[J]. 石油物探, 1999, 38(4):36-43.
|
[24] |
Gu H M, Jiang T, Zhu P M, et al. Sensitivity analysis of petrophysical parameter inversion using seabottom multiwave,multicomponent AVO data[J]. Geophysical Prospecting for Petroleum, 1999, 38(4):36-43.
|
[1] |
HE Sheng, WANG Wan-Ping, DONG Gao-Feng, NAN Xiu-Jia, WEI Feng-Feng, BAI Yong-Yong. Application of the opposing-coils transient electromagnetic method in urban geological surveys[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1379-1386. |
[2] |
WU Song, NING Xiao-Bin, YANG Ting-Wei, JIANG Hong-Liang, LU Chao-Bo, SU Yu-Di. Neural network-based denoising for ground-penetrating radar data[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1298-1306. |
|
|
|
|