|
|
Neural network-based denoising for ground-penetrating radar data |
WU Song1( ), NING Xiao-Bin2,3( ), YANG Ting-Wei2,3,4, JIANG Hong-Liang2,3,4, LU Chao-Bo2,3,4, SU Yu-Di2 |
1. Guangxi Tianxin Expressway Co.,Ltd.,Nanning 530022,China 2. Guangxi Transportation Co.,Ltd.,Nanning 530007,China 3. Guangxi Highway Tunnel Safety Warning Engineering Research Center,Nanning 530007,China 4. Guangxi Key Lab of Road Structure and Materials,Nanning 530007,China |
|
|
Abstract Ground-penetrating radar (GPR) data are often contaminated by random noise in the actual engineering inspection.The noise in data will reduce the signal-to-noise ratio and resolution of the data,adversely affecting the subsequent inversion and interpretation.Accordingly,this study proposed neural network-based denoising for GPR data.First,a multi-layer neural network model was constructed to integrate the data corrupted by white Gaussian noise into the noise-free data.Then,the corrupted data and their corresponding noise patches were built as training data.The weights of neurons in every layer of the model e updated using a back-propagation algorithm to minimize the model training loss.Finally,the two synthetic data and the measured radar data were input to the trained model,and the model's output was calculated using the noise characteristic weights acquired from the training.Compared with the curvelet transform,the numerical simulation test results verify the effectiveness and robustness of the method proposed in this study.Moreover,the proposed method can suppress the noise more thoroughly in areas with complex structures and weak amplitudes,and show effective signals more clearly.
|
Received: 26 July 2022
Published: 27 October 2023
|
|
Corresponding Authors:
NING Xiao-Bin
E-mail: 262607406@qq.com;631118892@qq.com
|
|
|
|
|
Single neuron model
|
|
MLP with one hidden layer
|
|
Operation module
|
|
Sequence module
|
|
MLP network structure diagram
|
|
Denoising results
|
噪声/dB | 正演数据含噪 信噪比/dB | MLP去噪结果 信噪比/dB | 曲波去噪结果 信噪比/dB | MLP去噪后结 构性相似指标 | 曲波去噪后结 构性相似指标 | 10 | 28.14 | 42.38 | 35.59 | 0.239 | 0.196 | 25 | 20.17 | 37.57 | 27.83 | 0.229 | 0.143 | 35 | 17.24 | 35.57 | 25.36 | 0.200 | 0.124 | 50 | 14.13 | 33.21 | 22.90 | 0.182 | 0.099 | 65 | 11.86 | 32.26 | 21.24 | 0.166 | 0.081 | 75 | 10.62 | 31.14 | 20.40 | 0.161 | 0.071 | 170 | 3.54 | 25.88 | 16.87 | 0.099 | 0.022 |
|
Comparison of denoising effects of neural network and curvelet denoising on different noises
|
|
Comparison of denoising effects of MLP and curvelet denoising on different noises
|
|
Complex data denoising results
|
|
Real data denoising results
|
[1] |
戴前伟, 吴铠均, 张彬. 短时傅里叶变换在GPR数据解释中的应用[J]. 物探与化探, 2016, 40(6):1227-1231.
|
[1] |
Dai Q W, Wu K J, Zhang B. A study of application of short-time Fourier transform to GPR data interpretation[J]. Geophysical and Geochemical Exploration, 2016, 40(6):1227-1231.
|
[2] |
张斯薇, 吴荣新, 韩子傲, 等. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2):496-501.
|
[2] |
Zhang S W, Wu R X, Han Z A, et al. The application of bilateral filtering to denoise processing of ground penetrating radar data[J]. Geophysical and Geochemical Exploration, 2021, 45(2):496-501.
|
[3] |
戴前伟, 成沁宇, 冯德山. 基于FastICA的低信噪比探地雷达信号去噪[J]. 物探化探计算技术, 2017, 39(6):727-735.
|
[3] |
Dai Q W, Cheng Q Y, Feng D S. Low signal-noise ratio GPR signal denoising based on FastICA[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(6):727-735.
|
[4] |
苏智光, 廖建军, 钱东宏. 探地雷达野外勘察数据干扰及其滤除方法[J]. 物探与化探, 2011, 35(3):427-430.
|
[4] |
Su Z G, Liao J J, Qian D H. The interference signal in GPR survey data and its filtering[J]. Geophysical and Geochemical Exploration, 2011, 35(3):427-430.
|
[5] |
周威帆. 基于f-x域模态分解的探地雷达数据处理与解释[D]. 长春: 吉林大学, 2020.
|
[5] |
Zhou W F. Data processing and interpretation of GPR based on mode decomposition in f-x domain[D]. Changchun: Jilin University, 2020.
|
[6] |
王超, 沈斐敏. 小波变换在探地雷达弱信号去噪中的研究[J]. 物探与化探, 2015, 39(2):421-424.
|
[6] |
Wang C, Shen F M. Study of wavelet transform in ground penetration radar weak signal denoising[J]. Geophysical and Geochemical Exploration, 2015, 39(2):421-424.
|
[7] |
李静和, 何展翔, 杨俊, 等. 曲波域统计量自适应阈值探地雷达数据去噪技术[J]. 物理学报, 2019, 68(9):74-83.
|
[7] |
Li J H, He Z X, Yang J, et al. Scale and rotation statistic-based self-adaptive function for ground penetrating radar denoising in curvelet domain[J]. Acta. Phys. Sin., 2019, 68(9):74-83.
|
[8] |
吴学礼, 闫枫, 甄然, 等. 基于小波变换和K-SVD的探地雷达杂波抑制研究[J]. 河北科技大学学报, 2021, 42(2):111-118.
|
[8] |
Wu X L, Yan F, Zhen R, et al. Research on adaptive clutter suppression for ground penetrating radar based on wavelet transform and K-SVD[J]. Journal of Hebei University of Science and Technology, 2021, 42(2):111-118.
|
[9] |
周旭辉, 马杰良, 吴蕾, 等. 基于正交多项式拟合的风廓线雷达风谱识别[J]. 现代雷达, 2011, 33(11):27-31.
|
[9] |
Zhou X H, Ma J L, Wu L, et al. Wind spectra identification of the WPR based on orthogonal polynomial fitting[J]. Modern Radar, 2011, 33(11):27-31.
|
[10] |
唐斌兵, 王正明, 汪雄良. 一种含椒盐噪声图像去噪的新方法[J]. 系统工程, 2008, 26(10):123-126.
|
[10] |
Tang B B, Wang Z M, Wang X L. A new method of removing salt-and-pepper noise in images[J]. Systems Engineering, 2008, 26(10):123-126.
|
[11] |
张东昊, 覃晖. 基于探地雷达和深度学习的隧道初期支护检测方法[J]. 现代隧道技术, 2020, 57(S1):174-178.
|
[11] |
Zhang D H, Qin H. Tunnel primary support detection using ground penetrating radar and deep learning[J]. Modern Tunnelling Technology, 2020, 57(S1):174-178.
|
[12] |
Han D, Tao L, Leng J B, et al. GCN:GPU-based cube CNN framework for hyperspectral image classification[C]// International Conference on Parallel Processing, 2017, 46:41-49.
|
[13] |
景卓鑫. 基于神经网络方法与RADARSAT-2雷达遥感数据的水稻参数反演研究[D]. 上海: 华东师范大学, 2014.
|
[13] |
Jing Z X. Retriving paddy rice biophysical parameters from RADARSAT-2 radar using neural network[D]. Shanghai: East China Normal University, 2014.
|
[14] |
徐昕军, 勾妍妍, 杨峰. 基于探地雷达与概率神经网络的城市道路路基病害预警模型研究[J]. 科学技术与工程, 2017, 17(17):118-124.
|
[14] |
Xu X J, Gou Y Y, Yang F. Research on early warning Model of roadbed diseases under urban roads based on GPR and probabilistic neural network[J]. Science Technology and Engineering, 2017, 17(17):118-124.
|
[15] |
吕永标, 赵建伟, 曹飞龙. 基于复合卷积神经网络的图像去噪算法[J]. 模式识别与人工智能, 2017, 30(2):97-105.
|
[15] |
Lyu Y B, Zhao J W, Cao F L. Image denoising algorithm based on composite convolutional neural network[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(2):97-105.
|
[16] |
李寻昌, 叶君文, 李葛, 等. 基于滑坡监测数据的Elman神经网络动态预测[J]. 煤田地质与勘探, 2018, 46(3):113-120,126.
|
[16] |
Li X C, Ye J W, Li G, et al. Elman neural network dynamic prediction based on landslide monitoring data[J]. Coal Geology & Exploration, 2018, 46(3):113-120,126.
|
[17] |
Silver D, Huang A, Maddision C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489.
|
[18] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communication ACM, 2017, 60(6):84-90.
|
[19] |
Jain V, Seung H S. Natural image denoising with convolutional networks[J]. Advances in Neural Information Processing Systems(NIPS), 2008, 21:769-776.
|
[20] |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
|
[21] |
Chen S, Abhinav S, Saurabh S, et al. Revisiting unreasonable effectiveness of data in deep learning era[C]// 2017 IEEE International Conference on Computer Vision (ICCV), 2017:843-852.
|
[22] |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229-1251.
|
[22] |
Zhou F Y, Jin L P, Dong J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.
|
[23] |
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5):359-366.
|
[24] |
Burger H C, Schuler C J, Harmeling S, et al. Image denoising:Can plain neural networks compete with BM3D?[C]// Computer Vision and Pattern Recognition, 2012:2392-2399.
|
[25] |
杨光照. 基于探地雷达的煤岩界面识别技术研究[D]. 徐州: 中国矿业大学, 2019.
|
[25] |
Yang G Z. Research on coal-rock interface recognition technology based on ground penetrating radar[D]. Xuzhou: China University of Mining and Technology, 2019.
|
[26] |
冯德山, 杨子龙. 基于深度学习的隧道衬砌结构物探地雷达图像自动识别[J]. 地球物理学进展, 2020, 35(4):1552-1556.
|
[26] |
Feng D S, Yang Z L. Automatic recognition of ground penetrating radar image of tunnel lining structure based on deep learning[J]. Progress in Geophysics, 2020, 35(4):1552-1556.
|
[27] |
季银涛. 基于深度学习的探地雷达图像介电常数反演研究[D]. 济南: 山东大学, 2021.
|
[27] |
Ji Y T. Deep learning based ground penetrating radar image permittivity inversion research[D]. Jinan: Shandong University, 2021.
|
[28] |
Sergey I, Christian S. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]// International Conference on Machine Learning,PMLR, 2015:448-456.
|
[29] |
冯德山, 戴前伟, 何继善, 等. 探地雷达GPR正演模拟的时域有限差分实现(英文)[J]. 地球物理学进展, 2006, 21(2):630-636.
|
[29] |
Feng D S, Dai Q W, He J S, et al. Finite difference time domain method of GPR forward simulation[J]. Progress in Geophysics, 2006, 21(2):630-636.
|
|
|
|