|
|
Development of the acquisition system of a broadband spectral induced polarization testers for rock and ore samples |
WANG Fei-Fei1,2( ), CHEN Ru-Jun1,2,3,4( ), LI Sheng-Jie1,2, SHEN Rui-Jie1,2, YIN Hao1,2, LIU Feng-Hai1,2, PENG Xin1,2 |
1. School of Geosciences and Info-physics, Central South University, Changsha 410083, China 2. AIoT Innovation and Entrepreneurship Education Center for Geology and Geophysics, Central South University, Changsha 410083, China 3. Hunan Key Laboratory of Nonferrous Resources and Geological Disaster Exploration, Changsha, 410083, China 4. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Changsha 410083, China |
|
|
Abstract The acquisition system is a very important part of a broadband spectral induced polarization (SIP) tester for rock and ore samples. Its performance directly determines the precision, power consumption, sampling rate, and signal-to-noise ratio of the tester. Therefore, it is a focus and challenge throughout the development of a tester to design an acquisition system with high input impedance, a high sampling rate, high precision, low noise, and low power consumption. Based on the principle of the quadrupole method, this study designed an acquisition system of a SIP tester that integrates four acquisition channels. The acquisition system uses the 24-bit ADC chip AD7760 to realize A/D conversion, uses the AD9837 chip to generate sine waveforms for self-check of the tester, and uses the FPGA chip of the model XC6SLX25 to control the acquisition system. The test results of the system are as follow. The acquisition system has input impedance greater than 1 TΩ, survey precision of 0.4%, a sampling rate of up to 2.5 MHz, and a bandwidth of 1~200 kHz. Each sampling channel of the acquisition system has short-circuit noise less than 1 mV and supports 1/5/25/125 times adjustable gain. The voltage and current of the signal source can be switched among 1 mV, 10 mV, 100 mV, 1 V, and 10 V and 1 μA, 10 μA, 100 μA, 1 mA, and 10 mA, respectively. The hardware acquisition system developed in this study can meet the needs for broadband SIP tests of rock and ore samples.
|
Received: 24 August 2021
Published: 03 January 2023
|
|
Corresponding Authors:
CHEN Ru-Jun
E-mail: wangff@csu.edu.cn;chen.rujun@foxmail.com
|
|
|
|
|
Schematic diagram of the working principle of the quadrupole method
|
|
SIP tester composition
|
|
Overall design of acquisition card
|
|
Functional Block Diagram of AD7760
|
|
Diagram of AD7760 and FPGA pin connection
|
|
Schematic diagram of self-check circuit
|
|
Structure diagram of main modules in FPGA
|
|
Power module division
|
|
The photo of the acquisition card
|
|
Four-channel short-circuit noise curve
|
|
The short-circuit input noise of channel 1 at different sampling rates
|
测试频点 | 串联1 GΩ电阻 | 串联10 GΩ电阻 | 未串联电阻 | 输入电压 | 输出电压 | 输入电压 | 输出电压 | 输入电压 | 输出电压 | 10 Hz | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 100 Hz | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1 kHz | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 10 kHz | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 100 kHz | 1.04 | 1.03 | 1.04 | 1.03 | 1.03 | 1.03 | 200 kHz | 1.04 | 1.01 | 1.04 | 1.01 | 1.04 | 1.01 | 400 kHz | 1.04 | 0.883 | 1.04 | 0.884 | 1.04 | 0.883 | 600 kHz | 1.04 | 0.673 | 1.04 | 0.674 | 1.04 | 0.673 | 800 kHz | 1.04 | 0.543 | 1.04 | 0.545 | 1.04 | 0.542 | 1 MHz | 1.04 | 0.468 | 1.05 | 0.470 | 1.04 | 0.467 |
|
Input impedance test resultsV
|
|
Resistor model
|
|
Test result of the prototype and LCR bridge
|
标本编号 | 类型 | 长/cm | 宽/cm | 高/cm | 02-6 | 大理岩 | 4.4 | 3.6 | 6.5 | 4000-19 | 铅锌矿 | 3.7 | 3.7 | 4.0 |
|
Parameter table of rock and ore specimens
|
|
Photos of rock and ore specimens
|
|
Measurement results of rock and ore specimens
|
[1] |
杨振威, 郑伟, 李晓斌, 等. 频谱激电法的发展与展望[J]. 物探与化探, 2015, 39(1):22-28.
|
[1] |
Yang Z W, Zheng W, Li X B, et al. The development and prospect of the spectrum induced polarization method[J]. Geophysical and Geochemical Exploration, 2015, 39(1): 22-28.
|
[2] |
蔡运胜, 尹洪岩, 张进国, 等. 激发极化法工作原理方法及应用效果探讨[J]. 矿产勘查, 2012, 3(2):212-218.
|
[2] |
Cai Y S, Yin H Y, Zhang J G, et al. Discussion on the principle, method and application effect of induced polarization method[J]. Mineral Exploration, 2012, 3(2): 212-218.
|
[3] |
米宏泽. 地球物理勘查仪器研发新成果及国产品牌化发展研究[J]. 矿产勘查, 2018, 9(3):413-419.
|
[3] |
Mi H Z. New achievements in the development and studies on geophysical exploration instrumentation and developmental research domestic brands[J]. Mineral Exploration, 2018, 9(3):413-419.
|
[4] |
雷闯, 陈志强, 张浩然, 等. 复电阻率法在油气勘探中的应用[J]. 中国石油和化工标准与质量, 2020, 40(1):127-128.
|
[4] |
Lei C, Chen Z Q, Zhang H R, et al. Application of complex resistivity method in oil and gas exploration[J]. China Petroleum and Chemical Standards and Quality, 2020, 40(1): 127-128.
|
[5] |
雷闯. 复电阻率法在涪陵地区页岩气勘探中的试验[C]// 中国石油学会2015年物探技术研讨会论文集, 2015.
|
[5] |
Lei C. Test of complex resistivity method in shale gas exploration in Fuling area[C]// Proceedings of 2015 Geophysical Prospecting Technology Seminar of China Petroleum Institute, 2015.
|
[6] |
邓春来. 大地电磁测深及大功率复电阻率法在地热勘探中的应用[C]// 中国资源综合利用协会第三届中国国际环保、能源和资源综合利用博览会暨2008’中国节能减排与资源综合利用论坛地热能开发利用分论坛暨热泵技术应用交流会论文集, 2008.
|
[6] |
Deng C L. Application of magnetotelluric sounding and high-power complex resistivity method in geothermal exploration[C]// China Resources Comprehensive Utilization Association,the 3rd China International Environmental Protection, Energy and Resource Comprehensive Utilization Expo 2008' China Energy Conservation, Emission Reduction and Comprehensive Utilization of Resources Forum Geothermal Energy Development and Utilization Sub-forum and Proceedings of Heat Pump Technology Application Exchange Conference, 2008.
|
[7] |
武斌, 邹俊, 马代海, 等. 频谱激电法在天然气水合物勘查中的应用[J]. 四川地质学报, 2016, 36(1):135-138.
|
[7] |
Wu B, Zou J, Ma D H, et al. Application of spectrum induced polarization method in natural gas hydrate exploration[J]. Journal of Sichuan Geology, 2016, 36(1): 135-138.
|
[8] |
孙萍. 可控源音频大地电磁和频谱激电测深在某矿产勘查中的应用[J]. 世界有色金属, 2018(12):162-164.
|
[8] |
Sun P. The application of controllable source audio magnetotelluric and spectral IP sounding in a mineral exploration[J]. World Nonferrous Metals, 2018(12):162-164.
|
[9] |
罗传华, 昌彦君, 李志华, 等. 频谱激电法在铜陵市某滑坡地段滑动面勘探中的应用[J]. 工程地球物理学报, 2017, 14(1),26-30.
|
[9] |
Luo C H, Chang Y J, Li Z H, et al. Application of spectrum induced polarization method in the exploration of sliding surface in a landslide section in Tongling City[J]. Journal of Engineering Geophysics, 2017, 14(1), 26-30.
|
[10] |
朱勇. 铬污染场地复电阻率法时频域联合探测技术研究[D]. 北京: 中国矿业大学(北京), 2013.
|
[10] |
Zhu Y. Research on time-frequency joint detection technology of complex resistivity method in chromium contaminated sites[D]. Beijing: China University of Mining and Technology (Beijing), 2013.
|
[11] |
陈皓. 频谱激电法接收机的研制[D]. 北京: 中国地质大学(北京), 2019.
|
[11] |
Chen H. Development of a spectrum IP method receiver[D]. Beijing: China University of Geosciences (Beijing), 2019.
|
[12] |
孙旭. 岩石激发极化与复电阻率频谱综合研究[D]. 北京: 中国石油大学(北京), 2018.
|
[12] |
Sun X. Comprehensive study of rock induced polarization and complex resistivity spectrum[D]. Beijing: China University of Petroleum (Beijing), 2018.
|
[13] |
王庆乙, 代丽, 邱刚. 我国激电法测量系统的失误与弥补措施[J]. 物探与化探, 2013, 37(6):1031-1033.
|
[13] |
Wang Q Y, Dai L, Qiu G. Errors and remedies of the IP measurement system in my country[J]. Geophysical and Geochemical Exploration, 2013, 37(6): 1031-1033.
|
[14] |
吴宇豪, 李京谋, 李桐林, 等. 一种利用频谱激电数据实部和虚部加权反演Cole-Cole模型参数的方法[J]. 地球物理学进展, 2017, 32(2):753-761.
|
[14] |
Wu Y H, Li J M, Li T L, et al. A method for weighted inversion of the Cole-Cole model parameters using the real and imaginary parts of spectral IP data[J]. Progress in Geophysics, 2017, 32(2) :753-761.
|
[15] |
Binley A, Slater L D, Fukes M, et al. Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone[J]. Water Resources Research, 2005, 41(12).
|
[16] |
Revil A. Spectral induced polarization of shaly sands: Influence of the electrical double layer[J]. Water Resources Research, 2012, 48(2):W02517(1-23).
|
[17] |
Johansson S, Lindskog A, Fiandaca G, et al. Spectral induced polarization of limestones: time domain field data, frequency domain laboratory data and physicochemical rock properties[J]. Geophysical Journal International, 2020, 220(2): 928-950.
|
[18] |
Lesmes D P, Frye K M. Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B3): 4079-4090.
|
[19] |
Zimmermann E, Kemna A, Berwix J, et al. A high-accuracy impedance spectrometer for measuring sediments with low polarizability[J]. Measurement Science & Technology, 2008, 19(10):105603( 1-9).
|
[20] |
杨迪. 天然岩矿石复电阻率测量及频谱曲线特征研究[D]. 北京: 中国地质大学(北京), 2019.
|
[20] |
Yang D. Natural rock ore complex resistivity measurement and spectral curve characteristics research[D]. Beijing: China University of Geosciences (Beijing), 2019.
|
[1] |
LIU Yun-Xiang, SI Hua-Lu, QIAO Hai-Yan, LIU Bai-Chuan. Progress and prospect of gravity and magnetic techniques for hydrocarbon exploration in China[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 563-574. |
[2] |
WANG Xu, CHEN Kai, LU Yong-Jian, YIN Yao-Tian. Portable three-component magnetic field measurement module[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1528-1533. |
|
|
|
|