|
|
Portable three-component magnetic field measurement module |
WANG Xu1( ), CHEN Kai1, LU Yong-Jian2, YIN Yao-Tian1( ) |
1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China 2. Qilu Aerospace Information Research Institute,Jinan 250000,China |
|
|
Abstract The high-precision magnetic field measurement module is mainly used in the scientific fields such as geology, geophysics, and national defense. However, the existing three-component magnetic field measurement module suffers poor portability (requiring a PC for data acquisition), large background noise, and short operating time. Therefore, this study developed a portable three-component magnetic field measurement module:a high-precision data measurement module and an Android control program. The test results show that the measurement module supports the interactive control using Android mobile phones and enjoys the advantages of low background noise (dynamic range>121dB@fs=1,000Hz), high clock synchronization precision (time drift±0.87 ms/day), long operating time (for one-week continuous work), and high scalability (supporting multiple fluxgate sensors).Portable three-component magnetic field mesurement module is portable,simpk and easy to use,suitable for field testing.
|
Received: 20 August 2021
Published: 03 January 2023
|
|
Corresponding Authors:
YIN Yao-Tian
E-mail: 3466604515@qq.com;yyt86@163.com
|
|
|
|
|
Picture of MagDAS-03 component
|
参数 | 测量范围 | -3dB带宽 | DC~3k Hz | 噪声 | <4 pT/ @1Hz | 功耗 | 1140 mW(+65 mA@12V, -30 mA@-12V) | 量程 | ±60~±1000 μT | 线性度 | 15 ppm | 体积 | 32(L)mm×32(W)mm×225(H)mm |
|
Fluxgate sensor parameters of Mag-13
|
|
Hardwareblock diagram
|
参数名称 | 具体指标 | 信噪比 | 124dB@1000Hz | 分辨率 | 31bits | 供电 | ±2.5V | 功耗 | 25mW@±2.5V |
|
Specification of ADS1282
|
|
Power supply topology structure of MagDAS-03
|
|
Time synchronization schematic
|
|
MCU program diagram
|
|
Soft main menu(a),status query(b) and setting interface(c)
|
|
Soft control menu(a),digital mode(b) and waveform mode(c)
|
|
Noisetime domain waveform
|
采样率 | 通道 | 本底噪声有效值 | 动态范围 | | x | 2.8740 μV | 127.82 dB | 250 Hz | y | 2.9094 μV | 127.71 dB | | z | 2.8008 μV | 128.04 dB | | x | 5.7232 μV | 121.84 dB | 1000 Hz | y | 5.4717 μV | 122.23 dB | | z | 5.5558 μV | 122.10 dB |
|
RMS of self-noise and dynamic range
|
|
Self-noisepower spectral density
|
工作模式 | 功耗 | 采集存储 | 600 mW | GPS、Wifi采集存储 | 1000 mW | 整机运行 | 2140 mW |
|
MagDAS-03 power test
|
|
MagDAS-03 bandwidth test
|
| Spectramag-6 | MagDAS-03 | 通道数 | 6 | 3 | 采样率 | 0.1~10000 Hz | 250、500、1000、2000 Hz | 功耗 | 9W | 1800 mW | 上位机 | PC | Android手机端 | 时间同步 | 无 | 有 |
|
Performance comparison between Spectramag-6 and MagDAS-03
|
[1] |
张健. 高分辨度磁强计信号采集系统[D]. 长沙: 长沙理工大学, 2019.
|
[1] |
Zhang J. Signal acquisition system of high resolution magnetometer[D]. Changsha: Changsha University of Science and Technology, 2019.
|
[2] |
刘斯, 曹大平, 唐立军, 等. 磁通门磁强计感应回路的稳态解析模型[J]. 传感技术学报, 2017, 30(4):555-559.
|
[2] |
Liu S, Cao D P, Tang L J, et al. Steady State analytical model of flux-gate magnetometer induction loop[J]. Chinese Journal of Sensors and Actuators, 2017, 30(4):555-559.
|
[3] |
孙希. 高精度ADC在数据采集系统中的应用[J]. 电子世界, 2015(22):33-34.
|
[3] |
Sun X. Application of high precision ADC in data acquisition system[J]. Electronic World, 2015(22):33-34.
|
[4] |
杨圆圆. 三分量地磁场检测系统的设计与实现[D]. 南京: 东南大学, 2016.
|
[4] |
Yang Y Y. Design and implementation of three-component geomagnetic field detection system[D]. Nanjing: Southeast University, 2016.
|
[5] |
李松鹤, 曹大平. 基于AD7791的磁通门传感器数据采集与存储系统[J]. 计算机测量与控制, 2017(8):315-318.
|
[5] |
Li S H, Cao D P. Data acquisition and storage system of flux-gate sensor based on AD7791[J]. Computer Measurement and Control, 2017(8):315-318.
|
[6] |
翁孟超, 杨志强, 宣仲义. 微型磁通门传感器的制备与测试研究进展[J]. 仪表技术与传感器, 2008(6):9-11,15.
|
[6] |
Weng M C, Yang Z Q, Xuan Z Y. Research progress on fabrication and testing of Micro flux-gate sensor[J]. Instrument Technique and Sensor, 2008(6):9-11,15.
|
[7] |
李艳. 基于单片机的传感器数据采集系统[J]. 化工自动化及仪表, 2013, 40(10):1313-1316.
|
[7] |
Li Y. Sensor data acquisition system based on SCM[J]. Automation & Instrumentation in Chemical Industry, 2013, 40(10):1313-1316.
|
[8] |
廉征环. 基于FPGA的传感器数据采集研究[J]. 数字技术与应用, 2013(11):93.
|
[8] |
Lian Z H. The sensor data acquisition based on FPGA research[J]. Journal of Digital Technology and Applications, 2013 (11) : 93.
|
[9] |
杨鹏飞, 张朴, 成鹏, 等. 基于三端式磁通门传感器的弱磁测量系统设计[J]. 计算机与数字工程, 2014, 42(5):887-890.
|
[9] |
Yang P F, Zhang P, Cheng P, et al. Design of weak magnetic measurement system based on three-terminal flux-gate sensor.[J] Computer and Digital Engineering, 2014, 42(5):887-890.
|
[10] |
章志涛, 张松勇, 顾伟. 基于三端式磁通门技术的磁力梯度仪[J]. 上海海事大学学报, 2008(2):35-38.
|
[10] |
Zhang Z T, Zhang S Y, Gu W. Magnetic gradiometer based on three-terminal flux-gate technology[J]. Journal of Shanghai Maritime University, 2008(2):35-38.
|
[11] |
梁洪勇. 基于磁通门传感器的弱磁感应强度测量系统设计[J]. 湖北成人教育学院学报, 2014, 20(3):12-13,11.
|
[11] |
Liang H Y. Weak magnetic induction intensity based on flux-gate sensor measuring system design[J]. Journal of Hubei Institute of Adult Education, 2014, 20 (3) : 12-13,11.
|
[12] |
王一, 宗发保, 赵瑜, 等. 三分量磁通门传感器的三轴正交校正与测量[J]. 山东农业大学学报:自然科学版, 2015, 46(2):232-237.
|
[12] |
Wang Y, Zong F B, Zhao Y, et al. Triaxial orthogonal correction and measurement of three-component flux-gate sensor[J]. Journal of Shandong Agricultural University: Natural Science Edition, 2015, 46(2):232-237.
|
[13] |
王超. 基于磁通门技术的海洋地理三分量磁力仪[D]. 杭州: 杭州电子科技大学, 2019.
|
[13] |
Wang C. Marine geographic three-component magnetometer based on flux-gate technology[D]. Hangzhou: Hangzhou Dianzi University, 2019.
|
[14] |
蔡璨, 贾云飞, 张燕强. 基于电磁法的未爆弹多通道同步探测系统研究[J]. 中国测试, 2020, 46(12):47-53.
|
[14] |
Cai C, Jia Y F, Zhang Y Q. Research on unexploded Ordnance multi-channel synchronous detection system based on electromagnetic Method[J]. China Measurement & Testing, 2020, 46(12):47-53.
|
[15] |
李庆, 贾云飞, 贺晨宇. 一种针对高分辨磁通门传感器的同步采集系统[J]. 南京理工大学学报, 2020, 44(1):7-14.
|
[15] |
Li Q, Jia Y F, He C Y. A synchronous acquisition for high resolution flux-gate sensor system[J]. Journal of Nanjing University of Science and Technology, 2020, 44 (1) : 7-14.
|
[16] |
周逢道, 韩思雨, 綦振伟, 等. 基于FPGA+DSP的浅地表频域电磁探测数字处理系统[J]. 湖南大学学报:自然科学版, 2016, 43(10):94-101.
|
[16] |
Zhou F D, Han S Y, Qi Z W, et al. Digital processing system of shallow surface frequency domain electromagnetic probe based on FPGA+DSP[J]. Journal of Hunan University:Natural Science Edition, 2016, 43(10) : 94-101.
|
[1] |
WANG Fei-Fei, CHEN Ru-Jun, LI Sheng-Jie, SHEN Rui-Jie, YIN Hao, LIU Feng-Hai, PENG Xin. Development of the acquisition system of a broadband spectral induced polarization testers for rock and ore samples[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1454-1462. |
[2] |
LEI Li-Ming, SHU Qing, YANG Ye, CHENG Guan-De. Noise analysis of QFA servo circuit for gravity gradiometer[J]. Geophysical and Geochemical Exploration, 2015, 39(S1): 22-27. |
|
|
|
|