|
|
Application of complex resistivity method to the exploration of marine shale gas in the Nanling Basin, Anhui Province |
YIN Qi-Chun1,2( ), WANG Yuan-Jun1, ZHOU Dao-Rong1, ZHANG Li3, SUN Tong2 |
1. Nanjing Center, China Geological Survey, Nanjing 210016, China 2. Harbin Comprehensive Survey Center of Natural Resources, China Geological Survey, Harbin 150081, China 3. Geological Exploration Technology Institute of Anhui Province, Hefei 230041, China |
|
|
Abstract The main part of the Nanling Basin in Anhui Province is a red Mesozoic continental basin, under which the distribution of marine strata is still undetermined and the potential of shale gas resources is unidentified. Based on the physical property characteristics that the Permian organic-rich shale reservoirs around the study area contain pyrite, this study carried out a geological survey of shale gas using the complex resistivity method. Specifically, this study designed an observation system suitable for the different geological characteristics inside and outside the basin, conducted fitting and inversion using Cole-Brown and Cole-Cole models, and plotted maps of near-field parameters electromagnetic resistivity and apparent charging rate. The results show that: (1) The Permian organic-rich shale contains high carbonaceous content and rich pyrite particles and has distinct characteristics of low resistivity and high polarizabi-lity. Therefore, it can be effectively distinguished from its surrounding rocks, which is favorable for the shale gas exploration using the complex resistivity method; (2) Polarizability is an effective parameter that can be used to identify deep organic-rich shale strata and even shale gas reservoirs; (3) Drilling tests were carried out based on the exploration results obtained using the complex resistivity method, successfully discovering the Triassic carbonate strata and predicting that below the red basin in the Nanling Basin is the favorable area of Permian shale gas reservoirs. This study demonstrates that the complex resistivity method can detect pyrite-bearing shale strata with a depth of greater than 2,000 m and a cumulative thickness of about 200 m in the Nanling Basin and is the only method that can directly indicate shale gas reservoirs in electromagnetic exploration. Therefore, the complex resistivity method can be applied to the geophysical prospecting of the marine shale gas in the Nanling Basin with complex geological conditions and even Southern China. The results of this exploration also provide a basis for the further exploration of the marine shale gas in the Nanling Basin.
|
Received: 10 June 2021
Published: 21 June 2022
|
|
|
|
|
|
Distribution map of measuring points by complex resistivity method in the Nanling Basin
|
|
Photos of pyrite distribution in Permian shale in southern Anhui Province
|
|
Resistivity logging curve of Well WYD1
|
地层 | 代号 | 主要岩性 | 标本数量 | 平均电阻率/(Ω·m) | 电性分层 | 白垩系 | K | 粉砂岩、砂砾岩 | 282 | 182 | 低阻层 | 三叠系 | T | 灰岩、泥灰岩 | 1 163 | 848 | 高阻层 | 二叠系大隆组 | P3d | 页岩 | 65 | | | 二叠系龙潭组 | P2l | 页岩、煤 | 95 | | | | | 细砂岩 | 214 | 132 | 低阻层 | 二叠系孤峰组 | P2g | 页岩、泥岩 | 64 | | | | | 黑色含炭硅质岩 | 598 | | | 二叠系栖霞组 | P1q | 灰岩 | 4 059 | 1780 | 高阻层 | 石炭系 | C | 灰岩、白云岩 | 2 538 | 泥盆系五峰组 | D3w | 石英砂岩、细砂岩 | 875 | 450 | 中阻层 | 志留系高家边组 | S1g | 含泥页岩、泥岩 粉砂岩、泥岩、页岩 | 65 158 | 134 | 低阻层 |
|
Statistical table of comprehensive electrical stratification in the study area
|
|
Instrument and observation system configuration diagram
|
|
Complex resistivity method data processing process
|
|
Inversion and geological interpretation sections of electromagnetic resistivity and visual charge rate of CR method
|
|
Inversion characteristics of electromagnetic resistivity(a) and apparent charge rate(b) around well Jingye 1
|
[1] |
滕龙, 徐振宇, 黄正清, 等. 页岩气勘探中的地球物理方法综述及展望[J]. 资源调查与环境, 2014, 35(1):61-66.
|
[1] |
Teng L, Xu Z Y, Huang Z Q, et al. Summary and prospect of geophysical methods for the shale gas exploration[J]. Resources Survey and Environment, 2014, 35(1): 61-66.
|
[2] |
何继善, 李帝铨, 戴世坤. 广域电磁法在湘西北页岩气探测中的应用[J]. 石油地球物理勘探, 2014, 49(5):1006-1012.
|
[2] |
He J S, Li D Q, Dai S K. Shale gas detection with wide field electromagnetic method in North-western Hunan[J]. Oil Geophysical Prospecting, 2014, 49(5): 1006-1012.
|
[3] |
Yang X L, Li B, Peng C S, et al. Application of a wide-field electromagnetic method to shale gas exploration in South China[J]. Applied Geophysics: Bulletin of Chinese Geophysical Society, 2017, 14(3): 441-448.
|
[4] |
孟凡洋, 包书景, 陈科, 等. 基于广域电磁法的页岩气有利区预测——以渝东北巫山地区为例[J]. 物探与化探, 2018, 42(1):68-74.
|
[4] |
Meng F Y, Bao S J, Chen K, et al. The prediction of shale gas favorable area based on wide area electromagnetic method: A case study of Wushan area in northeast Chongqing[J]. Geophysical and Geochemical Exploration, 2018, 42(1): 68-74.
|
[5] |
何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5):985-990.
|
[5] |
He J S. New research progress in theory and application of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 985-990.
|
[6] |
李帝铨, 汪振兴, 胡艳芳, 等. 广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例[J]. 物探与化探, 2020, 44(5):991-998.
|
[6] |
Li D Q, Wang Z X, Hu Y F, et al. The application of wide field electromagnetic method to shale gas exploration in Wuling Mountain area: A case study of Tongzi area in northern Guizhou[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 991-998.
|
[7] |
傅良魁. 复电阻率法异常的频谱及空间分布规律[J]. 地质与勘探, 1981, 15(2):48-55.
|
[7] |
Fu L K. Spectrum and spatial distribution pattern of anomalies of the complex resistivity method[J]. Geology and Exploration, 1981, 15(2): 48-55.
|
[8] |
罗延钟, 吴之训. 谱激电法中频率相关系数的应用[J]. 地球物理学报, 1992, 35(4):490-500.
|
[8] |
Luo Y Z, Wu Z X. The application of frequency dependent factor in spectral induced polarization method[J]. Chinese Journal of Geophysics, 1992, 35(4): 490-500.
|
[9] |
李汝传, 王书民, 雷达. 复电阻率法和CSAMT法在土屋铜矿区的勘查效果[J]. 地质与勘探, 2004, 38(s1):32-36.
|
[9] |
Li R C, Wang S M, Lei D. The results of complex resistivity (CR) and controlled source audio-frequency magnetotellurics (CSAMT) survey in Tuwu copper mining area[J]. Geology and Exploration, 2004, 38(s1): 32-36.
|
[10] |
张焱孙, 张虎生, 邢应太, 等. 江西北武夷某多金属矿区复电阻率法勘查效果[J]. 物探与化探, 2010, 34(5):587-589.
|
[10] |
Zhang Y S, Zhang H S, Xing Y T, et al. The effect of applying complex resistivity method to the exploration of a certain polymetallic deposit in Wuyi northern Jiangxi Province[J]. Geophysical and Geochemical Exploration, 2010, 34(5): 587-589.
|
[11] |
徐自生, 张丽, 唐伟, 等. 复电阻率法(CR)在内蒙古那吉河铅锌矿探测中的应用[J]. 矿产勘查, 2015, 6(2):165-170.
|
[11] |
Xu Z S, Zhang L, Tang W, et al. Application of complex resis-tivity method (CR) in prospecting lead-zinc deposit in Inner Mongolia[J]. Mineral Exploration, 2015, 6(2): 165-170.
|
[12] |
许传建, 徐自生, 杨自成, 等. 复电阻率(CR)法探测油气藏的应用效果[J]. 石油地球物理勘探, 2004, 39(S):31-35.
|
[12] |
Xu C J, Xu Z S, Yang Z C, et al. Application of the complex resistivity (CR) method to detect oil and gas reservoirs[J]. Oil Geophysical Prospecting, 2004, 39(S): 31-35.
|
[13] |
苏朱刘, 吴信全, 胡文宝, 等. 复视电阻率(CR)法在油气预测中的应用[J]. 石油地球物理勘探, 2005, 40(4):467-471.
|
[13] |
Su Z L, Wu X Q, Hu W B, et al. Application of complex apparent resistivity (CR) method in prediction of oil/gas[J]. Oil Geophysical Prospecting, 2005, 40(4): 467-471.
|
[14] |
苏朱刘, 胡文宝, 颜泽江, 等. 油气藏上方激电谱的野外观测试验结果及分析[J]. 石油天然气学报, 2009, 31(6):59-64.
|
[14] |
Su Z L, Hu W B, Yan Z J, et al. Field test result and analysis on induced-polarization spectrum of oil-gas reservoirs[J]. Journal of Oil and Gas Technology, 2009, 31(6): 59-64.
|
[15] |
赵迪斐, 郭英海, 朱炎铭, 等. 龙马溪组页岩气复电阻率勘探的理论依据[J]. 非常规油气, 2016, 3(3):15-20.
|
[15] |
Zhao D F, Guo Y H, Zhu Y M, et al. The theoretical basis of shale gas exploration with complex resistivity in Longmaxi formation[J]. Unconventional Oil & Gas, 2016, 3(3): 15-20.
|
[16] |
雷闯. 复电阻率法在涪陵地区页岩气勘探中的试验[C]// 中国石油学会2015年物探技术研讨会论文集, 2015.
|
[16] |
Lei C. Experimentation of the complex resistivity method in shale gas exploration in the Fuling area[C]// Proceedings of the 2015 Geophysical Exploration Technology Symposium of the Chinese Petroleum Society, 2015.
|
[17] |
刘东鹰. 苏皖下扬子区中古生界油气勘探方向[J]. 石油天然气学报, 2003, 25(s2):46-47.
|
[17] |
Liu D Y. Target of Meso-Paleozoic hydrocarbon exploration in Jiangsu-Anhui Lower Yangtze region[J]. Journal of Jianghan Petroleum Insititute, 2003, 25(s2): 46-47.
|
[18] |
赵牧华, 石刚, 张安徽, 等. 安徽皖江地区页岩气地质调查地震勘探数据采集技术研究[J]. 华东地质, 2017, 38(3):203-209.
|
[18] |
Zhao M H, Shi G, Zhang A H, et al. Acquisition technology study of shale gas seismic prospecting data in the Wanjiang region, Anhui Province[J]. East China Geology, 2017, 38(3): 203-209.
|
[19] |
宋桂桥, 杨振升, 薛野. 中石化下扬子地区油气地震勘探攻关进展及方向[J]. 石油物探, 2019, 58(2):303-312.
|
[19] |
Song G Q, Yang Z S, Xue Y. Progress and direction of seismic exploration in the SINOPEC Lower Yangtze area, China[J]. Geophysical Prospecting for Petroleum, 2019, 58(2): 153-162.
|
[20] |
殷启春, 郑红军, 蒲可瑜, 等. 安徽巢湖—含山地区页岩气二维地震勘探研究[J]. 安徽地质, 2019, 29(1):49-54.
|
[20] |
Yin Q C, Zheng H J, Pu K Y, et al. Two-dimensional seismic exploration of shale gas in the Chaohu-Hanshan area, Anhui Province[J]. Geology of Anhui, 2019, 29(1): 49-54.
|
[21] |
刘崧. 谱激电法[M]. 武汉: 中国地质大学出版社, 1998.
|
[21] |
Liu S. SIP method[M]. Wuhan: China University of Geosciences Press, 1998.
|
[22] |
潘磊, 陈桂华, 徐强, 等. 下扬子地区二叠系富有机质泥页岩孔隙结构特征[J]. 煤炭学报, 2013, 38(5):787-793.
|
[22] |
Pan L, Chen G H, Xu Q, et al. Pore structure characteristics of Permian organic-rich shale in Lower Yangtze area[J]. Journal of China Coal Society, 2013, 38(5): 787-793.
|
[23] |
郑红军, 殷启春, 滕龙, 等. 下扬子地区古生界页岩气基础地质调查[R]. 中国地质调查局南京地质调查中心, 2018.
|
[23] |
Zheng H J, Yin Q C, Teng L, et al. Fundamental Geological Investigation of Paleozoic Shale Gas in the Lower Yangzi Region[R]. Nanjing Center, China Geological Survey, 2018.
|
[24] |
赵志义, 王帅, 刘昊, 等. 基于模糊综合评价法优选安徽省页岩气潜力区[J]. 中国石油和化工标准与质量, 2019, 39(18):155-156.
|
[24] |
Zhao Z Y, Wang S, Liu H, et al. Fuzzy integrated evaluation method for the selection of shale gas potential areas in Anhui Province[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(18): 155-156.
|
[25] |
徐菲菲, 张训华, 黄正清, 等. 下扬子地区宁国凹陷大隆组-孤峰组泥页岩储层特征[J]. 成都理工大学学报:自然科学版, 2019, 46(2):54-64.
|
[25] |
Xu F F, Zhang X H, Huang Z Q, et al. Characteristics of the Dalong and Gufeng Formation shale reservoirs in Ningguo depression, Lower Yangtze Region, China[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2019, 46(2): 54-64.
|
[26] |
宋腾, 林拓, 陈科, 等. 下扬子皖南地区上二叠统(泾页1井)发现海陆过渡相页岩气[J]. 中国地质, 2017, 44(3):606-607.
|
[26] |
Song T, Lin T, Chen K, et al. The discovery of shale gas in Upper Permian transitional facies at Jinye-1 well in Lower Yangtze region[J]. Geology in China, 2017, 44(3): 606-607.
|
[27] |
石刚, 滕龙, 王佳龙, 等. 下扬子地区二叠系“三气一油”钻探发现[J]. 中国地质, 2018, 45(2):4164-17.
|
[27] |
Shi G, Teng L, Wang J L, et al. Drilling discovery of “Three Gas One Oil” in the Permian strata of Lower Yangtze area[J]. Geo-logy in China, 2018, 45(2): 416-417.
|
[28] |
王俊涛, 徐锦龙, 沈仕豪. 安徽无为—南陵—宣城地区基础地质调查与综合编图(2019年度)[R]. 安徽省地质调查院, 2019.
|
[28] |
Wang J T, Xu J L, Sheng S H. Fundamental Geological Survey and Integrated Mapping in Wuwei-Nanling-Xuancheng area, Anhui Province (2019)[R]. Geological Survey of Anhui Province, 2019.
|
[29] |
向葵, 胡文宝, 严良俊, 等. 川黔地区页岩复电阻率的频散特性[J]. 石油地球物理勘探, 2014, 49(5):10131019.
|
[29] |
Xiang K, Hu W B, Yan L J, et al. Complex resistivity dispersion characteristics of shale samples in Sichuan and Guizhou area[J]. Oil Geophysical Prospection, 2014, 49(5): 1013-1019.
|
[30] |
张丽, 吴凯, 王秋璇, 等. 复电阻率(CR)法在江苏某地金属矿上的应用[J]. 中国石油和化工标准与质量, 2017, 37(16):90-91.
|
[30] |
Zhang L, Wu K, Wang Q X, et al. Application of the complex resistivity (CR) method on a metal mine in Jiangsu Province[J]. China Petroleum and Chemical Standard and Quality, 2017, 37(16): 90-91.
|
[31] |
Brown R J. EM coupling in multifrequency IP and a generalization of the Cole-Cole impedance model[J]. Geophysical Prospecting, 1985, 33(2): 282-302.
|
[32] |
安徽省地质局区域地质调查队. 中华人民共和国区域地质调查报告宣城幅广德幅(1:20万)[R]. 安徽省地质局区域地质调查队, 1974.
|
[32] |
Anhui Provincial Geological Bureau Regional Geological Survey Team. Report of the regional geological survey of the People’s Republic of China, Xuancheng Section & Guangde Section (1:200 000)[R]. Anhui Provincial Geological Bureau Regional Geo-logical Survey Team, 1974.
|
[33] |
杜建国, 许卫, 孙乘云. 中华人民共和国区域地质调查报告安庆市幅(1:25万)[R]. 安徽省地质调查院, 2005.
|
[33] |
Du J G, Xu W, Sun C Y, Report of the regional geological survey of the People’s Republic of China, Anqing Section[R]. Geological Survey of Anhui Province, 2005.
|
[34] |
郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7):1209-1218.
|
[34] |
Guo X S. Rules of two-factor enrichment for marine shale gas in southern China:Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218.
|
[35] |
翟刚毅, 王玉芳, 包书景, 等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 2017, 42(7):1057-1068.
|
[35] |
Zhai G Y, Wang Y F, Bao S J, et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in southern China[J]. Earth Science, 2017, 42(7): 1057-1068.
|
[36] |
王钢金. 从重磁场特征探讨江南断裂和周王断裂的性质[J]. 安徽地质, 1993, 3(1):71-76.
|
[36] |
Wang G J. Study on properties of the Jiangnan and Zhouwang Faults through characteristic analysis of their gravity and magnetic fields[J]. Geology of Anhui, 1993, 3(1): 71-76.
|
[1] |
ZHOU Yin-Ming, LIU Xue-Jun, ZHANG Chun-He, ZHU Yong-Shan. The TEEM technology for quick identification of‘sweet spot’ of shale gas and its applications[J]. Geophysical and Geochemical Exploration, 2015, 39(1): 60-63,83. |
[2] |
ZHANG Yan-Sun, ZHANG Hu-Sheng, GENG Ying-Ta, DU Rui-Yun. THE EFFECT OF APPLYING COMPLEX RESISTIVITY METHOD TO THE EXPLORATION OF A CERTAIN POLYMETALLIC DEPOSIT IN WUYI, NORTHERN JIANGXI PROVINCE[J]. Geophysical and Geochemical Exploration, 2010, 34(5): 587-589. |
|
|
|
|