|
|
A collaborative airborne, ground, and borehole exploration technology system for concealed magmatic copper-nickel deposits |
HUANG Xu-Zhao1( ), FAN Zheng-Guo1, HE Jing-Zi1,2, GE Teng-Fei1,2, WANG Si-Xun1, MAN Yi3, WANG Peng3, LI Jun3, WANG Heng3 |
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China 2. School of Geophysics and Information Technology,China University of Geosciences (Beijing), Beijing 100083,China 3. No. 6 Geological Brigade, Xinjiang Bureau of Geology and Mineral Development, Hami 839000, China |
|
|
Abstract In recent years, prospecting in coverage areas has become an important topic in China due to the strong demand for energy and mineral resources, and there is an urgent need for new targeted methods and technologies of prospecting. This study put forward a technology system for the collaborative and rapid prospecting of copper-nickel deposits in coverage areas that combines airborne-ground-borehole prospecting methods and technologies. Meanwhile, this study established the framework and description of the collaborative, rapid, and effective exploration technology system. Taking the terrain and geology of coverage areas, as well as the distribution characteristics of deep mineral resources in the area as preconditions, this technology system mainly uses the methods of aero geophysics combined with ground and borehole geophysical exploration and focuses on big data fusion, weak information extraction, and geophysical-geological modeling methods. Meanwhile, it takes geological structure and metallogenic theory as guidance. This technical system has been verified in the exploration of the concealed magmatic copper-nickel deposit in the Qixin area, Ruoqiang County, Xinjiang, achieving positive results.
|
Received: 14 October 2021
Published: 21 June 2022
|
|
|
|
|
|
Work flow chart of rapid-collaborative exploration technology system for magmatic Cu-Ni deposit
|
21]) and regional location of the study area(b) (modified after [22]) ">
|
Sketch map of geotectonics and distribution of mafic-ultramafic complexes in Eastern Tianshan—Beishan region(a) (modified after [21]) and regional location of the study area(b) (modified after [22])
|
|
Part achievement maps of Qixin prospecting area a—shadow map of aeromagnetic ΔT; b—shadow map of aeromagnetic vertical gradient; c—shadow map of aeromagnetic vertical component; d—shadow map of the 0th track of airborne electromagnetic (TEM); e—shadow map of total trace of airborne gamma spectrum; f—inferred lithologic structure map, the white frame is the range of favorable prospecting area in Qibei; 1—inferred ultrabasic intrusive rock; 2—infer basic intrusive rocks characterized by negative magnetic field; 3—infer basic intrusive rocks characterized by positive magnetic field; 4—inferred olivine norite, pyroxene olivine and gabbro diabase; 5—inferred weakly magnetic olivine gabbro; 6—inferred diorite; 7—inferred Permian acid intrusive rock; 8—inferred Hongliuhe formation of Permian; 9—inferred Carboniferous Gandun formation; 10—inferred Paleoproterozoic Dunhuang rock group; 11—inferred fracture
|
|
Comprehensive geophysical map of Qibei prospecting target area a—ground magnetic ΔT contour map; b—residual gravity contour map; c—apparent resistivity contour map; d—apparentpolarizabilitycontour map
|
|
3D geophysical inversion source data
|
|
Apparent density(a), apparent susceptibility (b) and fusion classification result(c) of cross section 4950
|
聚类结果 | 视磁化率/ (10-5SI) | 相对密度/ (g·cm-3) | 对应岩性 | 类别1 | 150 | -0.13 | 长英质变质岩系或长石 砂岩类或花岗岩类 | 类别2 | 1290 | -0.12 | 辉长岩类 | 类别3 | 310 | 0.05 | 辉长岩类 | 类别4 | 350 | 0.33 | 橄榄岩类或含铜镍矿 体的橄榄岩 | 类别5 | 340 | 0.15 | 辉石岩类或橄榄岩类 | 类别6 | 4290 | 0.05 | 辉长岩类 | 类别7 | 2790 | 0.08 | 辉长岩类 | 类别8 | 4240 | -0.09 | 蛇纹石化橄榄岩 | 类别9 | 4940 | -0.01 | 蛇纹石化橄榄岩 | 类别10 | 2960 | -0.12 | 辉绿岩类 | 类别11 | 310 | -0.13 | 辉长岩类 |
|
Fusion classification result of apparent suscepti-bility and apparent density of section 4950
|
|
Comprehensive section results of line 4 in Qixin exploration area
|
|
Logging curve of hole ZK4-2 in Qixin exploration area
|
|
Three dimensional geological model of Qixin complex
|
[1] |
严加永, 孟贵祥, 吕庆田, 等. 综合地球物理在荒漠覆盖区隐伏矿床预测与定位中的应用:以新疆拉伊克勒克铜多金属矿床为例[J]. 地球物理学报, 2021, 64(11):4117-4133.
|
[1] |
Yan J Y, Meng G X, Lyu Q T, et al. Prediction and location of concealed deposits in desert gobi coverage areas using intergrated geophysics: An example of the Layikeleke copper polymetallic deposit in Xinjiang, Northwest China[J]. Chinese Journal of Geophysics, 2021, 64(11): 4117-4133.
|
[2] |
姚卓森, 秦克章. 造山带中岩浆铜镍硫化物矿床的地球物理勘探:现状、问题与展望[J]. 地球物理学进展, 2014, 29(6):2800-2817.
|
[2] |
Yao Z S, Qin K Z. Geophysical exploration for magmatic Cu-Ni sulfide deposits in the orogenic belt: current status, problems and vistas[J]. Progress in Geophysics, 2014, 29(6): 2800-2817.
|
[3] |
谢燮, 李文明, 孙吉明, 等. 新疆北山地区白山镁铁—超镁铁岩体LA-ICP-MS钻石U-Pb年龄、地球化学特征及其找矿意义[J]. 地质科技情报, 2018, 37(6):11-21.
|
[3] |
Xie X, Li W M, Sun J M, et al. Geochemistry and zircon U-Pb dating of the Baishan mafic-ultramafic rock complex in the Beishan area of Xinjiang and its prospecting significance[J]. Geological Science and Technology Information, 2018, 37(6): 11-21.
|
[4] |
Xue S C, Li C S, Wang Q F, et al. Geochronology, petrology and Sr-Nd-Hf-S isotope geochemistry of the newly-discovered Qixin magmatic Ni-Cu sulfide prospect, southern Central Asian Orogenic Belt, NW China[J]. Ore Geology Reviews, 2019, 111: 1-18.
|
[5] |
He J Z, Fan Z G, Xiong S Q, et al. Geophysical prospecting of copper-nickel deposits in Beishan rift zone, Xinjiang[J]. China Geology, 2021(1): 126-146.
|
[6] |
宋谢炎, 胡瑞忠, 陈列锰. 中国岩浆铜镍硫化物矿床地质特点及其启示[J]. 南京大学学报:自然科学, 2018, 54(2):221-235.
|
[6] |
Song X Y, Hu R Z, Chen L M. Characteristics and inspiration of the Ni-Cu sulfide deposits in China[J]. Journal of Nanjing University:Natural Science, 2018, 54(2): 221-235.
|
[7] |
刘月高, 吕新彪, 阮班晓, 等. 新疆北山早二叠世岩浆铜镍硫化物矿床综合信息勘查模式[J]. 矿床地质, 2019, 38(3):644-666.
|
[7] |
Liu Y G, Lyu X B, Ruan B X, et al. A comprehensive information exploration model for magmatic Cu-Ni sulfide deposits in Beishan, Xinjiang[J]. Mineral Deposits, 2019, 38(3): 644-666.
|
[8] |
葛藤菲, 黄旭钊, 范正国, 等. 一种基于重磁数据智能融合的深部地质建模方法[J]. 地球物理学进展, 2020, 35(6): 2323-2331.
|
[8] |
Ge T F, Huang X Z, Fan Z G, et al. Intelligent fusion based on gravity and magnetic data deep geologic modeling method[J]. Progress in Geophysics, 2020, 35(6): 2323-2331.
|
[9] |
史培军, 潘耀忠, 陈云浩, 等. 多尺度生态资产遥感综合测量的技术体系[J]. 地球科学进展, 2002, 17(2):169-173.
|
[9] |
Shi P J, Pan Y Z, Chen Y J, et al. Technical system of ecological capital intergrated measurement using multi-scale remotely sensed data[J]. Advance in Earth Sciences, 2002, 17(2): 169-173.
|
[10] |
杨伟利, 王毅, 王传刚, 等. 鄂尔多斯盆地多种能源矿产分布特征与协同勘探[J]. 地质学报, 2010, 84(4):579-586.
|
[10] |
Yang L W, Wang Y, Wang C G, et al. Distribution and co-exploration of multiple energy minerals in Ordos Basin[J]. Acta Geological Sinica, 2010, 84(4): 579-586.
|
[11] |
李增学, 王佟, 王怀洪, 等. 多能源矿产协同勘查理论与技术体系研究[J]. 中国煤炭地质, 2011, 23(4):68-72.
|
[11] |
Li Z X, Wang T, Wang H H, et al. Theory and technical system study on multiple energy mineral resources exploration in coordination[J]. Coal Geology of China, 2011, 23(4): 68-72.
|
[12] |
王毅, 杨伟利, 邓军, 等. 多种能源矿产同盆共存富集成矿(藏)体系与协同勘探——以鄂尔多斯盆地为例[J]. 地质学报, 2014, 88(5):815-823.
|
[12] |
Wang Y, Yang L W, Deng J, et al. Accumulation system of cohabitating multi-energy minerals and their comprehensive exploration in sedimentary basin :A case study of Ordos Basin, NW China[J]. Acta Geological Sinica, 2014, 88(5): 815-823.
|
[13] |
满荣江. 我国煤田地质的的综合勘查技术体系[J]. 黑龙江科学, 2016, 7(10):56-57.
|
[13] |
Man R J. Comprehensive exploration technology system of coal field geology[J]. Heilongjiang Science, 2016, 7(10): 56-57.
|
[14] |
刘欢, 王立娟, 廖紫骅, 等. “空天地”三位一体的山区铁路综合勘察技术体系及应用[J]. 北京测绘, 2019, 33(12):1479-1485.
|
[14] |
Liu H, Wang L J, Liao Z H, et al. The integrated survey technical system and application of “Space-Air-Ground” in mountains region of railway[J]. Beijing Surveying and Mapping, 2019, 33(12): 1479-1485.
|
[15] |
范正国, 黄旭钊, 熊盛青, 等. 磁测资料应用技术要求[M]. 北京: 地质出版社, 2010:51-55.
|
[15] |
Fan Z G, Huang X Z, Xiong S Q, et al. Technical requirements for the application of magnetic data[M]. Beijing: Geological Publishing House, 2010:51-55.
|
[16] |
黄敏, 刘洋旭, 蔡永丰. 新疆北山启鑫基性-超基性岩体地球化学特征及地质意义[J]. 新疆地质, 2018, 36(1):44-50.
|
[16] |
Huang M, Liu Y X, Cai Y F. Geochemical characteristics of Qixin mafic-ultramafic pluton in Beishan, Xinjiang Province and Its geological significance[J]. Xinjiang Geology, 2018, 36(1): 44-50.
|
[17] |
苏本勋, 秦克章, 孙赫, 等. 新疆北山地区红石山镁铁-超镁铁岩体的岩石矿物学特征:对同化混染和结晶分异过程的启示[J]. 岩石学报, 2009, 25(4):873-887.
|
[17] |
Su B X, Qin K Z, Sun H, et al. Petrological and mineralogical characteristics of Hongshishan mafic-ultramafic complex in Beishan area, Xinjiang: Implications for assimilation and fractional crystallization[J]. Acta Petrologica Sinica, 2009, 25(4): 873-887.
|
[18] |
卢鸿飞, 赵献军, 郭勇明, 等. 北山裂谷红石山镍矿床特征及成因——多期岩浆成矿作用[J]. 新疆地质, 2012, 30(2):187-191.
|
[18] |
Lu H F, Zhao X J, Guo Y M, et al. The characteristic of Hongshishan nickel deposit in Xinjiang Beishan rift and its cause-multi-time rock magma mineralization[J]. Xinjiang Geology, 2012, 30(2): 187-191.
|
[19] |
阮班晓, 吕新彪, 俞颖敏, 等. 新疆北山二叠纪镁铁-超镁铁质岩成因、成矿作用和找矿信息[J]. 地球科学, 2020, 45(12):4481-4497.
|
[19] |
Ruan B X, Lü X B, Yu M, et al. Petrogenesis, mineralization and prospecting information of Permian mafic-ultramafic rocks, Beishan, Xinjiang[J]. Earth Science, 2020, 45(12): 4481-4497.
|
[20] |
王恒, 王鹏, 李建, 等. 新疆若羌坡北地区镁铁-超镁铁质侵入岩含矿特征及找矿方法探讨[J]. 中国地质, 2015, 42(3):777-784.
|
[20] |
Wang H, Wang P, Li J, et al. A tentative discussion on features of mafic-ultramafic rocks and exploration methods in Pobei area of Ruoqiang, Xinjang[J]. Geology in China, 2015, 42(3): 777-784.
|
[21] |
Su B X, Qin K Z, Santosh M, et al. The Early Permian mafic-ultramafic complexes in the Beishan Terrane, NW China: Alaskan-type intrusives or rift cumulates?[J]. Journal of Asian Earth Sciences, 2013, 66: 175-187.
|
[22] |
Sun T, Qian Z Z, Deng Y F, et al. PGE and Isotope (Hf-Sr-Nd-Pb) Constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, northwestern China[J]. Economic Geology, 2013, 108: 1849-1864.
|
[1] |
WAN Tai-Ping, ZHANG Li, LIU Han-Liang. Regional geochemical characteristics and metallogenic prospect area prediction of strategic mineral antimony in the Eerguna block, Heilongjiang Province, China[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1179-1188. |
[2] |
YUAN Yu-Ting, LIU Xue-Min, WANG Xue-Qiu, TAN Qin-Ping. Sulfur-lead isotopes based tracing of the metal element anomalies identified in the total metal measurement of surface fine-grained soils: A case study of the Shuiyindong Carlin-type concealed gold deposit[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1083-1097. |
|
|
|
|