|
|
Application of geochemical survey of lithic fragments in ore prospecting in arid Gobi desert of the Beishan area, Gansu Province: A case study of the discovery of the gold-arsenic deposit in Sanbaidun area |
LEI Zi-Qiang( ), CHEN Jie( ), CHEN Shi-Ming, FANG Cheng-Hao, YANG Zhen-Xi, WANG-Zhen |
Fourth Institute of Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Recourses, Jiuquan 735000, China |
|
|
Abstract Based on the landscape characteristics of the arid Gobi desert in the Beishan area, Gansu Province, this study carried out a 1:50,000 stream sediment survey in the Sanbaidun area and delineated 10 integrated anomalies. Then, the As-3 anomaly was preferentially selected for detail inspection by taking lithic fragments with grain sizes of 2~20 mm at multiple locations within 1/3 line spacing using a grid density of 100 m × 20 m. As a result, three integrated anomalies of lithic fragments were delineated and their characteristics were investigated. The dominant ore-forming elements were identified as As and Au, and two integrated anomalies were preferentially selected for detailed inspection using methods such as geochemical profile and trenching. Consequently, four Au orebodies, two As orebodies, one Au mineralized body, and one As mineralized body were found. The prospecting results indicate that the geochemical survey of lithic fragments can achieve ideal prospecting effects in the arid Gobi desert landscape area of Beishan and that 1:10,000 surveys of lithic fragments can be used to verify the anomalies of 1:50,000 stream sediment surveys.
|
Received: 04 May 2021
Published: 21 June 2022
|
|
Corresponding Authors:
CHEN Jie
E-mail: 719252554@qq.com;491699357@qq.com
|
|
|
|
Ⅱ 2 1—Dunhuang stratigraphic division; —Luoyachushan-Liuyuan stratigraphic division; —Alxa stratigraphic division; —Zoulang stratigraphic division; —stratigraphic division of north Qilian; —stratigraphic division of middle Qilian; —stratigraphic division of south Qilian ">
|
Regional geological map of Sanbaidun area a—regional stratigraphic division; b—regional lithology distribution; c—regional geological map;1—Quaternary alluvium; 2—Quaternary eluvial and Deluvial deposits; 3—rock group B of Dunhuang rock group; 4—rock group C of Dunhuang rock group; 5—quartz diorite; 6—quartz monzonite diorite; 7—monzogranite; 8—granodiorite; 9—tonalite; 10—Archean granitic tonalite gneiss; 11—Paleoproterozoic middle and low-grade metamorphic rocks; 12—Carboniferous-Permian shallow marine clastic rock; 13—basic-ultrabasic rock; 14—Caledonian-Wallician quartz diorite and granite; 15—ductile shear zone and strong strain zone; 16—fault; 17—geological boundary; 18—gold deposit; 19—stratigraphic boundary; 20—stratigraphic boundary; 21—study area; Ⅱ—Tarim stratigraphic area;Ⅲ—North China stratigraphic area; Ⅳ—Kunlun -Qilian-Qinling stratigraphic area; —Dunhuang stratigraphic division; —Luoyachushan-Liuyuan stratigraphic division; —Alxa stratigraphic division; —Zoulang stratigraphic division; —stratigraphic division of north Qilian; —stratigraphic division of middle Qilian; —stratigraphic division of south Qilian
|
|
Comprehensive anomaly map of 1:50 000 stream sediment survey in Sanbaidun area 1—Quaternary system; 2—rock group B of Dunhuang rock group; 3—rock group C of Dunhuang rock group; 4—syenogranite; 5—quartz monzonite diorite; 6—quartz diorite;7—tonalite; 8—monzogranite; 9—granodiorite; 10—granite; 11—porphyritic granite; 12—porphyritic monzogranite; 13—monzonitic granitic mylonite; 14—measured normal fault; 15—measured right lateral translation fault; 16—faults of unknown nature; 17—mylonitization zone; 18—comprehensive abnormal location and number
|
|
Location map of Sanbaidun cuttings 1—Quaternary alluvium; 2—monzogranite; 3—granodiorite; 4—quartz schist; 5—amphibolite schist; 6—biotite plagioclase gneiss; 7—hornblende plagioclase gneiss; 8—sericite; 9—granite vein; 10—quartz vein; 11—rock cuttings sampling point; 12—sampling points of repeated rock cuttings
|
元素 | 分析方法 | 规范要求 | 检出限 | 单位 | Cu | 电感耦合等离子体质谱法 | 1.5 | 0.6 | 10-6 | Zn | 粉末压片—X射线荧光光谱法 | 15 | 4 | 10-6 | Pb | 电感耦合等离子体质谱法 | 5 | 0.5 | 10-6 | W | 电感耦合等离子体质谱法 | 0.5 | 0.5 | 10-6 | Mo | 电感耦合等离子体质谱法 | 0.5 | 0.02 | 10-6 | Sn | 交流电弧—发射光谱法 | 1 | 0.6 | 10-6 | Ag | 交流电弧—发射光谱法 | 0.03 | 0.02 | 10-6 | As | 氢化物发生—原子荧光光谱法 | 1 | 0.2 | 10-9 | Sb | 氢化物发生—原子荧光光谱法 | 0.2 | 0.05 | 10-6 | Au | 泡沫塑料富集—电感耦合等离子体质谱法 | 0.3 | 0.1 | 10-9 |
|
Analysis methods of rock cuttings samples
|
元素 | k值 | 异常下限 | 元素 | k值 | 异常下限 | Cu | 2 | 20 | Sn | 2.1 | 1.8 | Zn | 2 | 88.9 | Ag | 2 | 57 | Pb | 2 | 25.3 | As | 2.2 | 9.3 | W | 2.1 | 0.89 | Sb | 2 | 0.23 | Mo | 2.4 | 1.5 | Au | 2 | 1.8 |
|
Statistics of rock debris anomaly lower limit in the study area
|
元素 | 地球化学场(N=4102) | 地球化学背景场 | D | 北山 背景值[25] | X | S | Cv | Kk | X0 | S0 | Cv0 | Kk0 | Ag | 52.48 | 20.26 | 0.41 | 1.05 | 51.19 | 6.29 | 0.13 | 1.02 | 3.30 | 50.00 | As | 7.07 | 18.87 | 2.39 | 0.89 | 4.12 | 3.32 | 0.42 | 0.52 | 9.75 | 7.90 | Au | 2.24 | 16.78 | 11.65 | 1.56 | 1.25 | 0.59 | 0.41 | 0.87 | 50.97 | 1.44 | Cu | 14.91 | 36.41 | 2.86 | 1.17 | 10.82 | 7.17 | 0.56 | 0.85 | 7.00 | 12.74 | Mo | 0.87 | 1.77 | 2.11 | 1.04 | 0.56 | 0.26 | 0.31 | 0.67 | 10.58 | 0.84 | Pb | 17.77 | 11.72 | 0.72 | 1.10 | 16.86 | 7.08 | 0.44 | 1.04 | 1.74 | 16.20 | Sb | 0.28 | 0.29 | 0.39 | 0.38 | 0.24 | 0.08 | 0.11 | 0.32 | 4.23 | 0.74 | Sn | 0.98 | 0.29 | 0.14 | 0.46 | 0.92 | 0.10 | 0.05 | 0.43 | 3.09 | 2.12 | W | 0.77 | 0.76 | 0.71 | 0.72 | 0.57 | 0.37 | 0.35 | 0.53 | 2.77 | 1.07 | Zn | 76.69 | 47.47 | 1.34 | 2.16 | 72.60 | 34.17 | 0.96 | 2.05 | 1.47 | 35.45 |
|
Characteristics of geochemical parameters in the study area
|
|
R-type cluster analysis pedigree of rock debris measment in Sanbaidun area
|
元素 | 因子序号 | F1 | F2 | F3 | Cu | 0.7649 | 0.0436 | 0.3102 | Zn | -0.0499 | -0.0109 | 0.8045 | Mo | 0.698 | 0.1431 | 0.1416 | W | -0.0056 | 0.1361 | 0.1046 | Pb | 0.5585 | 0.0105 | -0.1481 | As | 0.054 | 0.9593 | -0.0557 | Sb | 0.0534 | 0.9586 | -0.0244 | Sn | 0.0052 | 0.0405 | 0.7388 | Ag | 0.575 | -0.033 | -0.2184 | Au | 0.7563 | -0.0157 | -0.0376 | 累计方差贡献率/% | 23.8699 | 41.8253 | 55.7319 | 元素组合 | Au、Cu、Mo、Pb、Ag | As、Sb | Zn、Sn | 备注 | 成矿元素 | 成矿元素 | |
|
Orthogonal rotation factor load matrix
|
|
Orthogonal rotation factor load diagram
|
|
Comprehensive anomaly map of the study area 1—Quaternary alluvium; 2—monzogranite;3—granodiorite; 4—quartz schist; 5—amphibolite schist; 6—biotite plagioclase gneiss; 7—hornblende plagioclase gneiss; 8—quartzite; 9—granite vein; 10— quartz vein; 11—location and number of probe groove;12—geological boundary; 13—Au ore body and number; 14—As ore body and number; 15—comprehensive anomaly and number of 1 : 10 000 rock cuttings measurement
|
|
Analysis of Ay1 anomaly in 1:10 000 cuttings measurement 1—Quaternary alluvium; 2—biotite plagioclase gneiss; 3—hornblende plagioclase gneiss; 4—granite; 5—quartz vein; 6—1:10 000 rock cuttings measurement; 7—anomaly and number of Au measured by 1:10 000 rock cuttings; 8—extreme point of element; 9—Au abnormality; 10—As abnormality; 11—Sb abnormality; 12—Ag abnormality; 13—Cu abnormality; 14—W abnormality; 15—Pb abnormality; 16—Mo abnormality
|
元素 组合 | 异常强度 | 异常面积S /km2 | 衬度 K=X/T | 异常规模 S×(X-T) | 异常NAP S×k | 异常分带 | 平均值 | 最高值 | Au7 | 105.52 | 1000 | 0.17 | 58.62 | 17.52 | 9.9 | 内、中、外 | As8 | 25.78 | 51.5 | 0.02 | 2.77 | 0.31 | 0.05 | 中、外 | As10 | 79.12 | 1935 | 0.14 | 8.51 | 10.12 | 1.23 | 内、中、外 | As15 | 31.62 | 94.5 | 0.14 | 3.4 | 3.08 | 0.47 | 内、中、外 | Cu5 | 54.78 | 988 | 0.24 | 2.74 | 8.13 | 0.64 | 内、中、外 | Mo1 | 13.74 | 40.5 | 0.03 | 9.16 | 0.41 | 0.3 | 内、中、外 | Mo7 | 3.35 | 10.7 | 0.6 | 2.24 | 1.12 | 1.35 | 中、外 | Pb1 | 146 | 328 | 0.03 | 5.7 | 3.4 | 0.16 | 中、外 | Pb6 | 42.73 | 195 | 0.09 | 1.7 | 1.5 | 0.15 | 外 | Pb7 | 32.86 | 46.6 | 0.01 | 1.3 | 0.08 | 0.01 | 外 | Sb8 | 1.5 | 11.6 | 0.04 | 6.63 | 0.05 | 0.28 | 内、中、外 | W3 | 1.6 | 3.38 | 0.04 | 1.8 | 0.03 | 0.08 | 中、外 | W6 | 2.48 | 19 | 0.08 | 2.8 | 0.12 | 0.22 | 内、中、外 | W7 | 1.71 | 13.5 | 0.01 | 1.92 | 0.01 | 0.02 | 中、外 | Ag1 | 243 | 481 | 0.03 | 4.27 | 6.5 | 0.15 | 中、外 | Ag4 | 64.54 | 73 | 0.02 | 1.13 | 0.16 | 0.02 | 外 |
|
Statistical table of abnormal characteristic parameters of Ay1 measured by 1:10 000 rock cuttings
|
|
Analysis of Ay3 anomaly in 1:10 000 cuttings measurement 1—Quaternary alluvium; 2—biotite plagioclase gneiss; 3—amphibolite schist; 4—quartz schist; 5—granite; 6—granodiorite; 7—monzogranite; 8—comprehensive abnormal position and number; 9—abnormal position and number of single element; 10—extreme point; 11—Au abnormality; 12—As abnormality; 13—Pb abnormality
|
元素 组合 | 异常强度 | 异常面积S /km2 | 衬度 K=X/T | 异常规模 S×(X-T) | 异常NAP S×k | 异常分带 | 平均值 | 最高值 | Au3 | 66.7 | 640 | 0.06 | 2.3 | 37 | 2.35 | 内、中、外 | Au9 | 18.6 | 1028.2 | 0.64 | 10.3 | 10.7 | 6.6 | 内、中、外 | As9 | 18.3 | 29.6 | 0.04 | 2 | 0.35 | 0.07 | 外 | As11 | 27.1 | 216 | 0.7 | 2.9 | 12.8 | 2 | 内、中、外 | Pb5 | 1.77 | 199 | 0.02 | 3.5 | 1.1 | 0.06 | 中、外 | Pb8 | 37.45 | 144 | 0.25 | 1.5 | 3.07 | 0.37 | 外 | Pb11 | 30.6 | 33.9 | 0.01 | 1.2 | 0.06 | 0.01 | 外 |
|
Statistical table of abnormal characteristic parameters of Ay1 measured by 1:10 000 rock cuttings
|
|
Project deployment of Sanbaidun gold arsenic mine 1—Quaternary alluvium; 2—biotite plagioclase gneiss; 3—hornblende plagioclase gneiss; 4—granite; 5—quartz vein;6—gold ore body; 7—gold mineralized body; 8—arsenic ore body; 9—arsenic mineralized body; 10—location and number of probe groove
|
|
Macroscopic and microscopic characteristics of Sanbaidun gold deposit
|
|
Sketch of STC5 trench in Sanbaidun 1—Quaternary system; 2—hornblende plagioclase gneiss; 3—biotite plagioclase gneiss; 4—cataclastic rock; 5—granodiorite; 6—quartz vein; 7—fault; 8—occurrence; 9—spectrum; 10—sampling location and number of chemical samples
|
[1] |
范红科, 温银维, 姜羡义, 等. 内蒙古中东部半干旱荒漠草原景观区岩屑地球化学测量的方法技术及应用效果[J]. 地质与勘探, 2008, 44(5):64-69.
|
[1] |
Fan H K, Wen Y W, Jiang X Y, et al. Methods, techniques and application effects of debris geochemical survey in semi arid desert steppe landscape area in central and Eastern Inner Mongolia[J]. Geology and Exploration, 2008, 44(5): 64-69.
|
[2] |
陈化奇, 李永庆. 岩屑测量方法在干旱荒漠区的找矿效果——以贺兰山北段嘎拉斯台白钨矿的发现为例[J]. 物探与化探, 2019, 43(1):55-63.
|
[2] |
Chen H Q, Li Y Q. Prospecting effect of cutting survey method in arid desert area: Taking the discovery of galasitai scheelite deposit in the northern part of Helan Mountain as an example[J]. Geophysical and Geochemical Exploration, 2019, 43(1): 55-63.
|
[3] |
任文秀, 王怀涛, 贾志磊, 等. 岩屑测量在甘肃北山地区水系沉积物测量弱异常区找矿中的应用——以任家山金矿的发现为例[J]. 甘肃地质, 2015, 24(4):52-57.
|
[3] |
Ren W X, Wang H T, Jia Z L, et al. Application of cuttings survey to prospecting in weak anomaly area of stream sediment survey in Beishan area of Gansu Province — Taking the discovery of renjiashan gold deposit as an example[J]. Geology of Gansu, 2015, 24(4): 52-57.
|
[4] |
叶红刚, 张德会, 程主华, 等. 岩屑地球化学测量在小冰沟铅锌矿区的找矿效果[J]. 物探与化探, 2014, 38(2):295-303.
|
[4] |
Ye H G, Zhang D H, Cheng Z H, et al. Prospecting effect of debris geochemical survey in xiaobinggou lead zinc deposit[J]. Geophysical and Geochemical Exploration, 2014, 38(2): 295-303.
|
[5] |
范红科. 岩屑地球化学测量方法在找矿中的应用——以内蒙古白音查干银(金)多金属矿为例[J]. 黄金科学技术, 2010, 18(1):32-35.
|
[5] |
Fan H K. Application of debris geochemical survey method in ore prospecting: A case study of Baiyinchagan silver (gold) polymetallic deposit in Inner Mongolia[J]. Gold Science and Technology, 2010, 18(1): 32-35.
|
[6] |
范丽琨, 周晓中, 蔡邦永, 等. 沟系岩屑测量在采石沟地区找矿中的应用效应[J]. 黄金科学技术, 2009, 17(4):50-53.
|
[6] |
Fan L K, Zhou X Z, Cai B Y, et al. Application effect of trench system cuttings survey in prospecting in caishigou area[J]. Gold Science and Technology, 2009, 17(4): 50-53.
|
[7] |
杨建国, 谢春林, 王小红, 等. 甘肃北山地区基本构造格局和成矿系列特征[J]. 地质通报, 2012, 31(Z1):422-438.
|
[7] |
Yang J G, Xie C L, Wang X H, et al. Basic tectonic framework and characteristics of metallogenic series in Beishan area of Gansu Province[J]. Geological Bulletin, 2012, 31(Z1): 422-438.
|
[8] |
赵茹石, 周振环, 毛金海, 等. 甘肃省板块构造单元划分及其构造演化[J]. 中国区域地质, 1994(1):28-36.
|
[8] |
Zhao R S, Zhou Z H, Mao J H, et al. Plate tectonic unit division and tectonic evolution in Gansu Province[J]. Regional Geology of China, 1994(1): 28-36.
|
[9] |
潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1):1-28.
|
[9] |
Pan G T, Xiao Q H, Lu S N, et al. Geotectonic unit division of China[J]. Geology of China, 2009, 36(1): 1-28.
|
[10] |
张新虎. 甘肃省区域构造及区域成矿找矿研究[D]. 兰州: 兰州大学, 2007.
|
[10] |
Zhang X H. Study on regional tectonics and regional metallogenic prospecting in Gansu Province[D]. Lanzhou: Lanzhou University, 2007.
|
[11] |
陈毓川, 朱裕生, 肖克炎, 等. 中国成矿区(带)的划分[J]. 矿床地质, 2006, 25(S1):1-6.
|
[11] |
Chen Y C, Zhu Y S, Xiao K Y, et al. The division of metallogenic zones in China[J]. Geology of Ore Deposits, 2006, 25(S1): 1-6.
|
[12] |
于海峰, 梅华林, 李铨, 等. 甘肃北山南带巨型韧性剪切带一条大型金矿成矿带[J]. 中国地质, 1998(3):23-25.
|
[12] |
Yu H F, Mei H L, Li Q, et al. A large gold metallogenic belt in the giant ductile shear zone of the southern Beishan belt, Gansu Province[J]. Geology of China, 1998(3): 23-25.
|
[13] |
陈柏林, 吴淦国, 杨农, 等. 甘肃北山白墩子—小西弓韧性剪切带及其控矿作用[J]. 地质力学学报, 2007, 13(2):99-109.
|
[13] |
Chen B L, Wu G G, Yang N, et al. Baidunzi Xiaoxigong ductile shear zone and its ore control in Beishan, Gansu Province[J]. Acta Geomechanica Sinica, 2007, 13(2): 99-109.
|
[14] |
袁伟恒. 甘肃北山地区小西弓金矿床地质地球化学特征及成因探讨[D]. 北京: 中国地质大学(北京), 2019.
|
[14] |
Yuan W H. Geological and geochemical characteristics and genesis of Xiaoxigong gold deposit in Beishan area, Gansu Province[D]. Beijing:Beijing: China University of Geosciences(Beijing), 2019.
|
[15] |
袁伟恒, 顾雪祥, 章永梅, 等. 甘肃北山地区小西弓金矿床成矿流体性质及矿床成因[J]. 现代地质, 2020, 34(3):554-568.
|
[15] |
Yuan W H, Gu X X, Zhang Y M, et al. Metallogenic fluid properties and genesis of Xiaoxigong gold deposit in Beishan area of Gansu Province[J]. Modern Geology, 2020, 34(3): 554-568.
|
[16] |
周树明, 陈世明. 甘肃省肃北县金庙沟金矿地质特征及找矿标志[J]. 甘肃科技, 2016, 32(5):23-24,42.
|
[16] |
Zhou S, Chen S M. Geological characteristics and prospecting criteria of jinmiaogou gold deposit in Subei County, Gansu Province[J]. Gansu science and technology, 2016, 32 (5): 23-24,42.
|
[17] |
陈荣. 甘肃北山金庙井金矿地质特征[J]. 甘肃科技, 2016, 32(15):36-37,25.
|
[17] |
Chen R. Geological characteristics of jinmiaojing gold deposit in Beishan, Gansu Province[J]. Gansu Science and Technology, 2016, 32(15): 36-37,25.
|
[18] |
王中辉. 甘肃省肃北县金庙井金矿地质特征及远景评价[J]. 甘肃科技, 2009, 25(20):45-47,131.
|
[18] |
Wang Z H. Geological characteristics and prospective evaluation of jinmiaojing gold deposit in Subei County, Gansu Province[J]. Gansu Science and Technology, 2009, 25(20): 45-47,131.
|
[19] |
张增馨. 甘肃省华窑山钨矿成矿模式浅析[J]. 甘肃科技, 2016, 32(9):43-44,53.
|
[19] |
Zhang Z X. Analysis on metallogenic model of huayaoshan tungsten deposit in Gansu Province[J]. Gansu Science and Technology, 2016, 32(9): 43-44,53.
|
[20] |
杨镇熙, 陈世明, 赵青虎. 甘肃北山前红泉萤石矿床地质特征及成因探讨[J]. 中国非金属矿工业导刊, 2020(2):13-15,31.
|
[20] |
Yang Z X, Chen S M, Zhao Q H. Discussion on geological characteristics and genesis of Hongquan fluorite deposit in beishanqian, Gansu Province[J]. China Nonmetallic Mineral Industry Guide, 2020(2): 13-15,31.
|
[21] |
李省晔, 刘成刚, 陈世强. 甘肃北山金庙沟南大型硅灰石矿床地质特征及找矿标志[J]. 地质找矿论丛, 2020, 35(4):373-379.
|
[21] |
Li S Y, Liu C G, Chen S Q. Geological characteristics and prospecting criteria of the large wollastonite deposit in the south of jinmiaogou, Beishan, Gansu Province[J]. Geological Prospecting Theory, 2020, 35(4): 373-379.
|
[22] |
刘建宏, 张新虎, 牛洪斌, 等. 甘肃省区域地球化学场特征[J]. 甘肃地质, 2015, 24(4):1-15.
|
[22] |
Liu J H, Zhang X H, Niu H B, et al. Characteristics of regional geochemical field in Gansu Province[J]. Geology of Gansu, 2015, 24(4): 1-15.
|
[23] |
杨镇熙, 赵吉昌, 荆德龙, 等. 甘肃北山前红泉地区斑状花岗闪长岩年代学、地球化学特征及其构造意义[J]. 矿物岩石地球化学通报, 2021, 40(1):228-241.
|
[23] |
Yang Z X, Zhao J C, Jing D L, et al. Geochronology, geochemistry and tectonic significance of porphyry granodiorite in qianhongquan area, Beishan, Gansu Province[J]. Mineral and Rock Geochemistry Bulletin, 2021, 40(1): 228-241.
|
[24] |
陈杰, 余君鹏, 李向民, 等. 祁连西段德勒诺尔—石板墩地区水系沉积物地球化学特征及找矿远景[J]. 地质与勘探, 2021, 57(1):94-109.
|
[24] |
Chen J, Yu J P, Li X M, et al. Geochemical characteristics and prospecting prospect of stream sediments in delnor shibandun area, Western Qilian[J]. Geology and Exploration, 2021, 57(1): 94-109.
|
[25] |
聂凤军, 江思宏, 白大明. 北山地区金属矿床成矿规律及找矿方向[M]. 北京: 地质出版社, 2002.
|
[25] |
Nie F J, Jiang S H, Bai D M. Metallogenic regularity and prospecting direction of metal deposits in Beishan area[M]. Beijing: Geological Publishing House, 2002.
|
[1] |
WAN Tai-Ping, ZHANG Li, LIU Han-Liang. Regional geochemical characteristics and metallogenic prospect area prediction of strategic mineral antimony in the Eerguna block, Heilongjiang Province, China[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1179-1188. |
[2] |
YUAN Yu-Ting, LIU Xue-Min, WANG Xue-Qiu, TAN Qin-Ping. Sulfur-lead isotopes based tracing of the metal element anomalies identified in the total metal measurement of surface fine-grained soils: A case study of the Shuiyindong Carlin-type concealed gold deposit[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1083-1097. |
|
|
|
|