|
|
Capabilities of airborne electromagnetic methods to detect permafrost |
SUN Si-Yuan( ), YU Xue-Zhong, XIE Ru-Kuan, HE Yi-Yuan, SHAN Xi-Peng, LI Shi-Jun |
China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, Beijing 100083, China |
|
|
Abstract It is critical for climate, water resources, ecology, and engineering construction in China to accurately assess the three-dimensional distribution and periodic change of permafrost. Permafrost is mainly distributed in high-elevation regions in China. Therefore, the surface geophysical prospecting suffers from low efficiency, high cost, and poor transportation in determining the thickness of permafrost in China. In contrast, the airborne electromagnetic methods using resistivity difference enjoy great advantages. This study established a geoelectric model based on the thickness and resistivity of permafrost in Qilian area, Qinghai Province. Then, by simulating the thickness and resistivity of permafrost, low resistance layer under permafrost, flight height, and changes in the angles of receiver coils, this study analyzed the differences in electromagnetic responses under different conditions obtained from one-dimensional forward modeling using time-domain and frequency-domain airborne electromagnetic systems AeroTEM and Impulse. Based on this, this study assessed the capability of airborne electromagnetic methods to detect the top and bottom interfaces of permafrost. According to the simulation results, frequency-domain airborne electromagnetic system Impulse can determine the top interface of the permafrost covered by a marsh, wetland, or moist meadow according to the thickness of melted permafrost under a low noise level. In comparison, time-domain airborne electromagnetic system AeroTEM can determine the bottom interface of the permafrost, with the determination accuracy significantly improving when low-resistivity layers occur beneath the permafrost. Therefore, the top and bottom interfaces of permafrost can be jointly determined using frequency and time-domain airborne electromagnetic data. The results of this study will provide theoretical support for the future application of airborne electromagnetic methods to permafrost surveys in China.
|
Received: 12 October 2020
Published: 25 February 2022
|
|
|
|
|
|
Helicopter airborne electromagnetic system
|
发射线圈类型 | 垂直磁偶极 | 发射信号基频 | 25/30/75/90 Hz | 发射线圈面积 | 122.7 m2 | 发射线圈匝数 | 5 | 发射波形 | 三角波 | 发射电流 | 410 A | 接收线圈类型 | X和Z分量传感器 | 输出数据 | 16个on-time数据道和17个off-time数据道 | 采样率 | 10 Hz | 收发矩 | 沿飞行方向,接收线圈位于发射线圈后方4.5 m |
|
Parameters of time domain airborne electromagnetic system AeroTEM IV
|
|
Bird sketch of Impulse system
|
线圈装置 | 水平共面装置和垂直共轴装置 | 发射频率 | 水平共面:930、4650、23250 Hz 垂直共轴:870、4350、21750 Hz | 发射磁矩 | 800 Am2 | 收发矩 | 6.5 m | 采样率 | 30 次/s | 输出数据 | 二次场Hx、Hz实虚分量 | 零点漂移 | 低频小于20×10-6/h、中频小于40×10-6/h、高频 小于60×10-6/h(预热 2 h后,温度在25 ℃以内) | 噪声水平 | 低频2×10-6、中频3×10-6、高频5×10-6 |
|
Parameters of frequency domain airborne electromagnetic system Impulse
|
|
Geoelectric model 1 of frozen soil
|
|
Response of permafrost models with different thickness
|
|
Geoelectric model 2 of frozen soil
|
|
Response of permafrost models with different resistivities
|
|
Geoelectric model 3 of frozen soil
|
|
Response of melting permafrost models with different thickness
|
|
Geoelectric model 4 of frozen soil
|
|
Response of permafrost models with different Low resistivity layers
|
|
Hz response of Model 3 with different flight altitudes
|
|
dBz/dt response of Model 1 with different flight altitudes
|
|
Hz response of Model 3 with different coil pitch Angles
|
|
dBz/dt response of Model 1 with different coil pitch Angles
|
[1] |
周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.
|
[1] |
Zhou Y W, Guo D X, Qiu G Q, et al. Geocryology in China [M]. Beijing: Science Press, 2000.
|
[2] |
柳瑶. 冻土电阻率模型及其试验研究[D]. 哈尔滨:东北林业大学, 2015.
|
[2] |
Liu Y. Establishment and experimental study of frozen soil resistivity model[D]. Haerbin: Northeast Forestry University, 2015.
|
[3] |
祝有海, 赵省民, 卢振权. 中国冻土区天然气水合物的找矿选区及其资源潜力[J]. 天然气工业, 2011,31(1):15-19.
|
[3] |
Zhu Y H, Zhao S M, Lu Z Q. Resource potential and reservoir distribution of natural gas hydrate in permafrost areas of China[J]. Natural Gas Industry, 2011,31(1):15-19.
|
[4] |
王通, 俞祁浩, 游艳辉, 等. 物探技术在多年冻土探测方面的应用[J]. 物探与化探, 2011,35(5):639-642.
|
[4] |
Wang T, Yu Q H, You Y H, et al. The application of electromagnetic technology to permafrost exploration[J]. Geophysical and Geochemical Exploration, 2011,35(5):639-642.
|
[5] |
祝杰, 李平, 刘应冬. 高寒冻土条件下CSAMT在地热勘探中的试验研究[J]. 地矿测绘, 2020,3(1):58-59.
|
[5] |
Zhu J, Li P, Liu Y D. Experimental study of CSAMT in geothermal exploration under alpine frozen soil condition[J]. Geological and Mineral Surveying and Mapping, 2020,3(1):58-59.
|
[6] |
王武, 赵林, 刘广岳, 等. 瞬变电磁法(TEM)在多年冻土区的应用研究[J]. 冰川冻土, 2011,33(1):156-163.
|
[6] |
Wang W, Zhao L, Liu G Y, et al. Geophysical mapping of permafrost using TEM[J]. Journal of Glaciology and Geocryology, 2011,33(1):156-163.
|
[7] |
Efremov V N. Delineating the thawed and ice-rich zones based on apparent electromagnetic resistivity of frozen ground[J]. Journal of Engineering of Heilongjiang University, 2014(3):262-265.
|
[8] |
顾钟炜. 北美多年冻土调查中使用的几种电磁方法[J]. 冰川冻土, 1981,3(4):88-98.
|
[8] |
Gu Z W. Several electromagnetic methods used in permafrost surveys in North America[J]. Journal of Glaciology and Geocryology, 1981,3(4):88-98.
|
[9] |
Hoekstra P, Sellmann P V, Delaney A. Ground and Airborne Resistivity Surveys of Permafrost Near Fairbanks, Alaska[J]. Geophysics, 1975,40(4):641-656.
|
[10] |
Hauck C, Guglielmin M, Isaksen K, et al. Applicability of frequency-domain and time-domain electromagnetic methods for mountain permafrost studies[J]. Permafrost & Periglacial Processes, 2010,12(1):39-52.
|
[11] |
Minsley B J, Abraham J D, Smith B D, et al. Airborne electromagnetic imaging of discontinuous permafrost[J]. Geophysical Research Letters, 2012,39(2):L02503.
|
[12] |
Pastick N J, Jorgenson M T, Wylie B K, et al. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats Ecoregion, Central Alaska[J]. Permafrost and Periglacial Processes, 2013,24(3):184-199.
|
[13] |
Foley N, Tulaczyk S, Auken E, et al. Mapping geothermal heat flux using permafrost thickness constrained by airborne electromagnetic surveys on the western coast of Ross Island, Antarctica[J]. Exploration Geophysics, 2020,51(1):84-93.
|
[14] |
Key K, Siegfried M R. The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics[J]. Journal of Glaciology, 2017,63(241):755-771.
|
[15] |
杨思忠, 金会军, 于少鹏, 等. 中俄输油管道(漠河—大庆段)主要冻土环境问题探析[J]. 冰川冻土, 2010,32(2):358-366.
|
[15] |
Yang S Z, Jin H J, Yu S P, et al. An Investigation into the Permafrost Environment along the Chinese-Russian Oil Pipeline Route from Mohe to Daqing[J]. Journal of Glaciology and Geocryology, 2010,32(2):358-366.
|
[16] |
文怀军, 鲁静, 尚潞君, 等. 青海聚乎更矿区侏罗纪含煤岩系层序地层研究[J]. 中国煤田地质, 2006,18(5):19-21.
|
[16] |
Wen H J, Lu J, Shang L J, et al. A sequence stratigraphic discussion of the Jurassic coal measures in the Juhugeng coalmine area in Qinghai province[J]. Coal Geology of China, 2006,18(5):19-21.
|
[17] |
史健宗, 南卓铜, 石伟, 等. 青藏高原多年冻土本底调查信息系统[J]. 遥感技术与应用, 2010,25(5):725-732.
|
[17] |
Shi J Z, Nan Z T, Shi W, et al. An Information System for the Permafrost Background Investigation over the Qinghai-Tibet Plateau[J]. Remote Sensing Technology and Application, 2010,25(5):725-732.
|
[18] |
肖继涛, 柳瑶, 胡照广, 等. 三种典型冻土的电阻率特性对比分析[J]. 森林工程, 2015,31(6):116-121.
|
[18] |
Xiao J T, Liu Y, Hu Z G, et al. Comparative analysis on resistivity characteristics of three typical permafrost[J]. Forest Engineering, 2015,31(6):116-121.
|
[19] |
王显烈. 用测井曲线解释冻土层厚度[J]. 冰川冻土, 1991,13(1):91-94.
|
[19] |
Wang X L. Interpretating the permafrost thickness with logging curves[J]. Journal of Glaciology and Geocryology, 1991,13(1):91-94.
|
[20] |
裴发根, 方慧, 杜炳锐, 等. AMT正演模拟及反演求导方法在探测冻土厚度中的应用——以青海木里地区多年冻土层为例[J]. 物探与化探, 2016,40(2):405-410.
|
[20] |
Pei F G, Fang H, Du B R, et al. The application of AMT forward modeling and inversion derivation method to detecting permafrost thickness: A case study of Muli permafrost area in Qinghai Province[J]. Geophysical and Geochemical Exploration, 2016,40(2):405-410.
|
[21] |
姚大为, 王书民, 雷达, 等. CSAMT在祁连山永久冻土区天然气水合物调查中的应用[J]. 工程地球物理学报, 2013,10(2):132-137.
|
[21] |
Yao D W, Wang S M, Lei D, et al. Application of CSAMT to Qilian Mountain Permafrost Region Gas Hydrate Investigation[J]. Chinese Journal of Engineering Geophysics, 2013,10(2):132-137.
|
[22] |
檀文慧, 钱卫, 巴晶, 等. 祁连山冻土区天然气水合物高密度电阻率法勘探应用[C]//中国地球科学联合学术年会, 2016.
|
[22] |
Tan W H, Qian W, Ba J, et al. Application of high-density resistivity method in gas hydrate exploration in qilian Mountain permafrost area[C]// Annual Meeting of Chinese Geoscience Union, 2016.
|
[23] |
刘钊剡, 韩德波. 电阻率测深在探测冻土层融化深度方面的应用[J]. 工程勘察, 1996,24(2):64-66.
|
[23] |
Liu Z Y, Han D B. Application of resistivity sounding in detecting thawing depth of frozen soil[J]. Geotechnical Investigation & Surveying, 1996,24(2):64-66.
|
[24] |
韩江涛, 刘国兴, 唐君辉. TEM拟地震成像法在漠河地区探测永久冻土层的应用[J]. 吉林大学学报:地球科学版, 2008,38(6):1060-1064.
|
[24] |
Han J T, Liu G X, Tang J H. Application of Transient Electromagnetic Pseudo-Seismic Interpretation Imaging Method to Explore Permafrost Strata in Mohe Region[J]. Journal of Jilin University:Earth Science Edition, 2008,38(6):1060-1064.
|
[25] |
王生廷, 盛煜, 吴吉春, 等. 祁连山大通河源区冻土特征及变化趋势[J]. 冰川冻土, 2015,37(1):27-37.
|
[25] |
Wang S T, Sheng Y, Wu J C, et al. The characteristics and changing tendency of permafrost in the source regions of the Datong River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2015,37(1):27-37.
|
[26] |
吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(Ⅰ):多年冻土分布[J]. 冰川冻土, 2007,29(3):418-425.
|
[26] |
Wu J C, Sheng Y, Yu H, et al. Permafrost in the Middle-East Section of Qilian Mountains (Ⅰ): Distribution of permafrost[J]. Journal of Glaciology and Geocryology, 2007,29(3):418-425.
|
[27] |
吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(Ⅱ):多年冻土特征[J]. 冰川冻土, 2007,29(3):426-432.
|
[27] |
Wu J C, Sheng Y, Yu H, et al. Permafrost in the Middle-East Section of Qilian Mountains (Ⅱ): Characters of permafrost[J]. Journal of Glaciology and Geocryology, 2007,29(3):426-432.
|
[28] |
殷长春. 航空电磁理论与勘查技术[M]. 北京: 科学出版社, 2018.
|
[28] |
Yin C C. Airborne electromagnetic theory and exploration technology [M]. Beijing: Science Press, 2018.
|
[29] |
王卫平, 王守坦. 频率域航空电磁法及应用[M]. 北京: 地质出版社, 2011.
|
[29] |
Wang W P, Wang S T. Frequency domain airborne electromagnetic method and its applications [M]. Beijing: Geological Publishing House, 2011.
|
[30] |
黄威. 时间域航空电磁系统仿真与关键技术研究[D]. 长春:吉林大学, 2016.
|
[30] |
Huang W. Time-domain Airborne Electromagnetic Simulation and Key Technologies[D]. Changchun: Jilin University, 2016.
|
[1] |
HUANG Wei, XIAO Du, BEN Fang, LI Jun-Feng, LI Fei, XU Zhi-Li. Study and removal of power frequency interference in time-domain airborne electromagnetic data[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1281-1287. |
[2] |
SHAN Xi-Peng, XIE Ru-Kuan, YU Xue-Zhong, LIANG Sheng-Jun, Li Jian. Application of the frequency-domain airborne electromagnetic method in shallow (brackish) saline water and freshwater surveys in the Xiong'an New Area[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 504-511. |
|
|
|
|