|
|
Characteristics and risk assessment of the heavy metals in stream sediments of Heze City |
XU Xiong1( ), SUN Yan-Ting1, XIAO Fang1, XIAO Pei-Ping1, DONG Ying-Shang1, LI Min2( ) |
1. Heze Ecological Environment Monitoring Center of Shandong Province, Heze 274000, China 2. College of Agricultural and Biological Engineering, Heze University, Heze 274000, China |
|
|
Abstract This study aims to investigate the characteristics, pollution sources, and ecological risks of heavy metals in the stream sediments in Heze City, which is an important catchment area in the east route of the South-to-North Water Diversion Project. To this end, stream sediment samples were collected from 25 sites of three major river basins in Heze City, and the contents of Cu, Zn, Ni, Cr, Cd, and Pb in the samples were analyzed. Moreover, this study assessed the ecological risks of these heavy metal elements using the pollution load index (PLI), potential ecological risk index (RI), and logarithmic regression model and determined the pollution sources of these heavy metal elements through correlation and principal component analysis. The results are as follows. The contents of the six heavy metal elements in the stream sediment samples were generally higher than their background values. The Ni and Cd contents at all investigated sites exceeded their background values, especially the Cd content at 40% of the investigated sites, which was more than three times the background value. The heavy metals in the stream sediments of the three river basins are unevenly distributed. The maximum values of the six heavy metals all originated from the samples of the Zhuzhaoxin River basin, of which the PLI, RI, and toxicity ratio Y were 1.67, 123 and 0.367, respectively. These values were higher than those of the other two basins, indicating that the heavy metals in sediments of the Zhuzhaoxin River basin reach moderate pollution and have high ecological risks and potential harm to aquatic organisms. The principal component analysis shows that the petroleum refining and related chemical enterprises in industrial parks are the main contributors to the enrichment of the six heavy metal elements.
|
Received: 01 August 2021
Published: 17 August 2022
|
|
Corresponding Authors:
LI Min
E-mail: xuxiong@hz.shandong.cn;limin428@126.com
|
|
|
|
|
Researched area location and distribution of sampling sites
|
污染负荷指数 | 污染等级 | 污染程度 | PLI<1 | 0 | 无污染 | 1≤PLI<2 | I | 中度污染 | 2≤PLI<3 | II | 强污染 | PLI≥3 | III | 极强污染 |
|
Levels and degrees of contamination corresponding to different PLI values
|
潜在生态风险系数(Er) | 潜在生态风险指数(RI) | 分级标准 | 风险等级 | 分级标准 | 风险等级 | Er<40 | 轻微生态风险 | RI<60 | 轻微生态风险 | 40≤Er<80 | 中等生态风险 | 60≤RI<120 | 中等生态风险 | 80≤Er<160 | 较强生态风险 | 120≤RI<240 | 较强生态风险 | 160≤Er<320 | 强烈生态风险 | RI≥240 | 极强生态风险 | Er≥320 | 极强生态风险 | | |
|
The grade criteria of Er and RI and its corresponding risk level
|
参数 | Cu | Zn | Ni | Cr | Cd | Pb | 截距B0 | -5.79 | -7.98 | -4.61 | -6.44 | -0.34 | -5.45 | 斜率B1 | 2.93 | 3.34 | 2.77 | 3.00 | 2.51 | 2.77 |
|
Intercept and slope corresponding to different heavy metals in logistic regression model
|
| 参数 | Cu | Zn | Ni | Cr | Cd | Pb | 洙 赵 新 河 流 域 | 含量范围/10-6 | 32.7~53.6 | 52.4~120.0 | 31.2~61.4 | 52.2~139.0 | 0.165~0.417 | 20.9~44.1 | 平均值/10-6 | 40.2 | 84.4 | 44.5 | 80.3 | 0.269 | 31.1 | 标准偏差/10-6 | 7.5 | 23.5 | 10.9 | 27.6 | 0.078 | 6.2 | 变异系数/% | 18.6 | 27.9 | 24.5 | 34.3 | 28.9 | 19.9 | 背景值/10-6 | 24.0 | 63.5 | 25.8 | 66.0 | 0.084 | 25.8 | Cf值 | 1.68 | 1.33 | 1.72 | 1.22 | 3.20 | 1.20 | 值 | 8.40 | 1.33 | 8.60 | 2.44 | 96.0 | 6.00 | 超背景值点位占比/% | 100 | 70 | 100 | 70 | 100 | 80 | 万 福 河 流 域 | 含量范围/10-6 | 15.5~41.6 | 62.8~87.6 | 27.8~57.3 | 54.1~92.3 | 0.173~0.367 | 22.7~37.6 | 平均值/10-6 | 27.4 | 74.2 | 42.9 | 69.3 | 0.254 | 29.9 | 标准偏差/10-6 | 8.7 | 10.5 | 10.2 | 11.5 | 0.079 | 4.9 | 变异系数/% | 31.8 | 14.2 | 23.7 | 16.5 | 31.0 | 16.3 | 背景值/10-6 | 24.0 | 63.5 | 25.8 | 66.0 | 0.084 | 25.8 | Cf值 | 1.14 | 1.17 | 1.66 | 1.05 | 3.02 | 1.16 | 值 | 5.70 | 1.17 | 8.30 | 2.10 | 90.6 | 5.80 | 超背景值点位占比/% | 62.5 | 87.5 | 100 | 62.5 | 100 | 75 | 东 鱼 河 流 域 | 含量范围/10-6 | 18.5~48.4 | 55.3~108.0 | 28.1~59.3 | 51.2~94.5 | 0.133~0.336 | 20.4~41.5 | 平均值/10-6 | 33.3 | 78.3 | 39.2 | 72.9 | 0.212 | 30.4 | 标准偏差/10-6 | 13.0 | 18.3 | 11.0 | 16.1 | 0.070 | 8.6 | 变异系数/% | 39.1 | 23.4 | 28.1 | 22.1 | 32.8 | 28.1 | 背景值/10-6 | 24.0 | 63.5 | 25.8 | 66.0 | 0.084 | 25.8 | Cf值 | 1.39 | 1.23 | 1.52 | 1.11 | 2.53 | 1.18 | 值 | 6.95 | 1.23 | 7.60 | 2.22 | 75.9 | 5.90 | 超背景值点位占比/% | 57.1 | 71.4 | 100 | 57.1 | 100 | 57.1 |
|
Descriptive statistics of heavy metals in sediments from different rivers
|
|
Difference of heavy metals in sediments in different watersheds
|
污染因子 | 污染程度 | Cu | Zn | Ni | Cr | Cd | Pb | 点位 | 占比 | 点位 | 占比 | 点位 | 占比 | 点位 | 占比 | 点位 | 占比 | 点位 | 占比 | Cf<1 | 低度 | 6 | 24% | 6 | 24% | 0 | 0% | 9 | 36% | 0 | 0% | 7 | 28% | 1≤Cf<3 | 中度 | 19 | 76% | 19 | 76% | 25 | 100% | 16 | 64% | 15 | 60% | 18 | 72% | 3≤Cf<6 | 重度 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 10 | 40% | 0 | 0% | Cf≥6 | 严重 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
|
Evaluation results of contamination factors of heavy metals in sediments
|
研究区域 | Cf值 | PLI | Cu | Zn | Ni | Cr | Cd | Pb | 宝鸡千河[6] | 0.20 | 0.76 | | 0.17 | 0.64 | 0.61 | 0.40 | 嘉兴河网[14] | 3.13 | 4.02 | 1.93 | 1.95 | 6.57 | 2.46 | 3.02 | 海口五源河[15] | 1.00 | 0.94 | 0.86 | 1.17 | 2.05 | 1.39 | 1.18 | 安徽宿州新汴河[16] | 5.15 | 0.47 | 0.78 | 0.77 | 355 | 1.85 | 3.14 | 济南市东泺河[17] | 2.88 | 2.30 | | 1.46 | 2.21 | 1.92 | 2.10 | 赣江南昌段[18] | 1.41 | 0.32 | | 0.35 | 16.7 | 0.89 | 1.19 | 洙赵新河 | 1.68 | 1.33 | 1.72 | 1.22 | 3.20 | 1.20 | 1.62 | 万福河 | 1.14 | 1.17 | 1.66 | 1.05 | 3.02 | 1.16 | 1.42 | 东鱼河 | 1.39 | 1.23 | 1.52 | 1.11 | 2.53 | 1.18 | 1.43 |
|
Evaluation results of heavy metals in sediments from different polluted rivers
|
|
Contribution of different heavy metals to potential ecological risk index
|
流域 | P | Pmax | Y | Cu | Zn | Ni | Cr | Cd | Pb | 洙赵新河 | 0.252 | 0.176 | 0.489 | 0.326 | 0.145 | 0.212 | 0.489 | 0.367 | 万福河 | 0.171 | 0.150 | 0.478 | 0.285 | 0.138 | 0.204 | 0.478 | 0.359 | 东鱼河 | 0.209 | 0.160 | 0.451 | 0.299 | 0.116 | 0.207 | 0.451 | 0.340 |
|
P and Y values of heavy metals in sediments from three rivers
|
|
Distribution of heavy metal contents in sediments of researched area
|
元素 | Cu | Zn | Ni | Cr | Cd | Pb | Cu | 1 | | | | | | Zn | 0.678** | 1 | | | | | Ni | 0.567** | 0.712** | 1 | | | | Cr | 0.478** | 0.781** | 0.739** | 1 | | | Cd | 0.728** | 0.655** | 0.712** | 0.493* | 1 | | Pb | 0.654** | 0.682** | 0.607** | 0.629** | 0.739** | 1 |
|
Correlation coefficients among heavy metal contents
|
重金属 | 因子载荷 | Cu | 0.807 | Zn | 0.891 | Ni | 0.856 | Cr | 0.812 | Cd | 0.854 | Pb | 0.850 | 方差贡献率 | 71.49% |
|
Principal component analysis result of heavy metals in sediments
|
[1] |
Luoma S N. Bioavailability of trace metals to aquatic organisms—A review[J]. Science of the Total Environment, 1983, 28(1):1-22.
|
[2] |
Sturm T W. Mobilization and fate of inorganic contaminants due to resuspension of cohesive sediments[J]. International Journal of Urology, 1996, 13(5):659-661.
|
[3] |
Zhung Y, Allen H E, Fu G. Effect of aeration of sediment on cadmium binding[J]. Environmental Toxicology & Chemistry, 2010, 13(5):717-724.
|
[4] |
王书锦, 刘云根, 王妍, 等. 洱海入湖河口湿地干湿季沉积物氮、磷、有机质垂向分布特征及污染风险差异性[J]. 环境科学, 2016, 37(12):4615-4625.
|
[4] |
Wang S J, Liu Y G, Wang Y, et al. Vertical distribution and pollution risk assessment of nitrogen,phosphorus,and organic matter in sediment of inflowing rivers of Erhai Lake estuarine wetland in wet and dry seasons[J]. Environmental Science, 2016, 37(12):4615-4625.
|
[5] |
王莉君, 吴思麟. 南京黑臭河道底泥污染特性及评价[J]. 科学技术与工程, 2018, 18(3):117-122.
|
[5] |
Wang L J, Wu S L. Pollution characteristics and contamination assessment of sediment from black-odor rivers in Nanjing City[J]. Science Technology and Engineering, 2018, 18(3):117-122.
|
[6] |
易文利. 宝鸡千河底泥营养盐及重金属风险评价[J]. 四川环境, 2018, 37(2):151-155.
|
[6] |
Yi W L. Risk assessment of heavy metals and nutrients in sediments of the Qianhe River in Baoji[J]. Sichuan Environment, 2018, 37(2):151-155.
|
[7] |
邬明鹏. 聚苯并噁嗪界面性质的调控及其对水中重金属离子Cr(Ⅵ)的脱除性能研究[D]. 武汉: 华中农业大学, 2018.
|
[7] |
Wu M P. Regulation of interfacial properties of polybenzoxazine for removing heavy metal ion Cr(VI) from aqueous solution[D]. Wuhan: Huazhong Agricultural University, 2018.
|
[8] |
Tomlinson D L, Wilson J G, Harris C R, et al. Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index[J]. Helgoländer Meeresunters, 1980(33):566-575.
|
[9] |
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990:94-172.
|
[9] |
China National Eenvironmental Monitoring Center. Background values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990:94-172.
|
[10] |
贾英, 方明, 吴友军, 等. 上海河流沉积物重金属的污染特征与潜在生态风险[J]. 中国环境科学, 2013, 33(1):147-153.
|
[10] |
Jia Y, Fang M, Wu Y J, et al. Pollution characteristics and potential ecological risk of heavy metals in river sediments of Shanghai[J]. China Environmental Science, 2013, 33(1):147-153.
|
[11] |
徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2):112-115.
|
[11] |
Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science and Technology, 2008, 31(2):112-115.
|
[12] |
马建华, 韩昌序, 姜玉玲. 潜在生态风险指数法应用中的一些问题[J]. 地理研究, 2020, 39(6):1233-1241.
|
[12] |
Ma J H, Han C X, Jiang Y L. Some problems in the application of potential ecological risk index[J]. Geographical Research, 2020, 39(6):1233-1241.
|
[13] |
Field L J, MacDonald D D, Norton S B, et al. Evaluating sediment chemistry and toxicity data using logistic regression modeling[J]. Environmental Toxicology and Chemistry, 1999, 18(6):1311-1322.
|
[14] |
丁婷婷, 杜士林, 王宏亮, 等. 嘉兴市河网重金属的污染特征及生态风险评价[J]. 环境化学, 2020, 39(2):500-511.
|
[14] |
Ding T T, Du S L, Wang H L, et al. Pollution characteristics and ecological risk assessment of heavy metals in Jiaxing River Network,Zhejiang Province,China[J]. Environmental Chemistry, 2020, 39(2):500-511.
|
[15] |
王向辉, 张艺杰, 刘又华, 等. 海口市五源河底泥分析评价及资源化利用研究[J]. 海南师范大学学报:自然科学版, 2019, 32(2):221-226.
|
[15] |
Wang X H, Zhang Y J, Liu Y H, et al. Analysis,evaluation and resource utilization of sediments in Wuyuan River of Haikou City[J]. Journal of Hainan Normal University:Natural Science, 2019, 32(2):221-226.
|
[16] |
余永琪, 冯松宝. 宿州新汴河底泥重金属分布特征及污染评价[J]. 西部资源, 2018(3):123-124,126.
|
[16] |
Yu Y Q, Feng S B. Distribution characteristics and pollution assessment of heavy metals in sediments from Xinbian River in Suzhou City[J]. Western Resources, 2018(3):123-124,126.
|
[17] |
王冬莹, 庄涛, 李迎霞, 等. 济南市东泺河底泥及其雨水汇水区地表灰尘中重金属的污染特征研究[J]. 安全与环境学报, 2018, 18(4):1586-1592.
|
[17] |
Wang D Y, Zhuang T, Li Y X, et al. Heavy metal pollution features in the sediment and surface dust of the rain-water catchment area of Dongluo river in Jinan City[J]. Journal of Safety and Environment, 2018, 18(4):1586-1592.
|
[18] |
石先罗, 章卫. 赣江南昌段沉积物重金属空间分布特征及风险评价[J]. 水利科技与经济, 2017, 23(9):1-5.
|
[18] |
Shi X L, Zhang W. Distribution characteristics and potential ecological risk assessment of heavy metals in the Nanchang section of Ganjiang River[J]. Water Conservancy Science and Technology and Economy, 2017, 23(9):1-5.
|
[19] |
盛维康, 侯青叶, 杨忠芳, 等. 湘江水系沉积物重金属元素分布特征及风险评价[J]. 中国环境科学, 2019, 39(5):2230-2240.
|
[19] |
Sheng W K, Hou Q Y, Yang Z F, et al. Distribution characteristics and ecological risk assessment of heavy metals in sediments from Xiang River[J]. China Environmental Science, 2019, 39(5):2230-2240.
|
[20] |
张伯镇, 雷沛, 潘延安, 等. 重庆主城区次级河流表层沉积物重金属污染特征及风险评价[J]. 环境科学学报, 2015, 35(7):2185-2192.
|
[20] |
Zhang B Z, Lei P, Pan Y A, et al. Pollution and ecological risk assessment of heavy metals in the surface sediments from the tributaries in the main urban districts,Chongqing City[J]. Acta Scientiae Circumstantiae, 2015, 35(7):2185-2192.
|
[21] |
刘薇. 石油化工园区土壤土壤重金属空间分布特征、源解析及污染评价[D]. 乌鲁木齐: 新疆大学, 2017.
|
[21] |
Liu W. Spatial distribution characteristics,source analysis and pollution evaluation of heavy metals in soil of petrochemical[D]. Urumqi: Xinjiang University, 2017.
|
[22] |
徐争启, 倪师军, 张成江, 等. 应用污染负荷指数法评价攀枝花地区金沙江水系沉积物中的重金属[J]. 四川环境, 2004, 23(3):64-67.
|
[22] |
Xu Z Q, Ni S J, Zhang C J, et al. Assessment of heavy metals in sediments from Jinsha River in Panzhihua area by pollution load index[J]. Sichuan Environment, 2004, 23(3):64-67.
|
[1] |
WAN Tai-Ping, ZHANG Li, LIU Han-Liang. Regional geochemical characteristics and metallogenic prospect area prediction of strategic mineral antimony in the Eerguna block, Heilongjiang Province, China[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1179-1188. |
[2] |
FAN Hai-Yin, SONG Rui-Rui, YU Lin-Song, TENG Yong-Bo, WAN Fang, ZHANG Xiu-Wen, LI Sheng-Yu, ZHAO Chuang. Heavy metal pollution and health risk assessment of groundwater in a typical chemical industry park in northwestern Shandong, China[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1326-1335. |
|
|
|
|