|
|
Geochemical characteristics and influencing factors of soil in Hulu River Basin in the southern mountainous region of Ningxia |
LI Yong-Chun( ), SU Ri-Li-Ge, ZHOU Wen-Hui( ), TAI Su-Ri-Ga-La, CHEN Guo-Dong, WANG Yong-Liang, GAO Qi, ZHANG Xiang, ZHANG Dong |
Hohhot Natural Resources Comprehensive Survey Center, China Geological Survey,Hohhot 010000, China |
|
|
Abstract Based on the data derived from the geochemical survey of land quality in the Guyuan region, Ningxia, this study studied the background values of 30 elements (indicators) in the surface soil using mathematical statistics. This study compared the distribution and enrichment (or dilution) characteristics of elements in different parent materials (parent rocks) and land use types and further analyzed the factors restricting the distribution of the elements from the perspective of element association characteristics using the principal component analysis method. The results show that the contents of iron-philic element Ni, tungsten-philic element Mo, alkaline (earth) metal elements Na2O, MgO, CaO, halogen elements I, F, and copper-philic element As were all higher than corresponding national background values, while the contents of the biophilic elements such as Hg, Se, organic matter, N, and Pb were lower than corresponding national background values. Parent materials (parent rocks) were the main factor controlling the characteristics of element contents in soil. In the process of soil formation, natural and man-made influences have caused the enrichment or dilution of some elements. N, Mo, I, organic matter, and S are significantly controlled by the laterite parent material and their parent rocks, and the erosion of Ca2+ and Na+ causes weathering and leaching due to hydrodynamic effects. The element contents in the soil in the river valley plain were between those of laterite and those of loess parent material. In a supergene environment, Na2O, K2O, and Cl, which are prone to dissolve in water, are rich in estuaries and valleys due to hydrodynamic action. P, Hg, Se, and Mo elements are locally rich due to human interference. The factor analysis shows that parent materials (parent rocks), weathering, leaching, and bioaccumulation in the process of soil formation, and human production activities all affect the background values of the surface soil in the study area. The study results will provide basic geochemical information for the assessment of the regional resources and environment.
|
Received: 24 July 2021
Published: 17 August 2022
|
|
Corresponding Authors:
ZHOU Wen-Hui
E-mail: 369517099@qq.com;Zhouwenhui8005@163.com
|
|
|
|
|
Location map of study area
|
|
Geological map of study area
|
检测指标 | 分析方法 | 规范要求 最低检出限 | 方法检出限 | | 检测指标 | 分析方法 | 规范要求 最低检出限 | 方法检出限 | SiO2 | XRF | 0.1 | 0.06 | | Cu | ICP-MS | 1 | 0.5 | Al2O3 | XRF | 0.05 | 0.04 | | F | ISE | 100 | 30 | TFe2O3 | ICP-OES | 0.05 | 0.04 | | Ge | ICP-MS | 0.1 | 0.05 | MgO | ICP-OES | 0.05 | 0.04 | | Hg | AFS | 0.0005 | 0.0003 | CaO | ICP-OES | 0.05 | 0.04 | | I | ICP-MS | 0.5 | 0.1 | Na2O | ICP-OES | 0.1 | 0.05 | | Mn | ICP-OES | 10 | 5 | K2O | ICP-OES | 0.05 | 0.04 | | Mo | ICP-MS | 0.3 | 0.1 | Corg. | HFIR | 0.1 | 0.1 | | N | VOL | 20 | 10 | pH | ISE | 0.1 | 0.1 | | Ni | ICP-OES | 2 | 1 | As | AFS | 1 | 0.5 | | P | ICP-OES | 10 | 5 | B | ICP-MS | 1 | 0.4 | | Pb | ICP-MS | 2 | 1 | Cd | ICP-MS | 0.03 | 0.02 | | S | ICP-OES | 30 | 10 | Cl | XRF | 20 | 20 | | Se | AFS | 0.01 | 0.005 | Co | ICP-MS | 1 | 0.5 | | V | ICP-OES | 5 | 1 | Cr | ICP-OES | 5 | 3 | | Zn | ICP-OES | 4 | 1 |
|
The analysis method and detection limit of target elements
|
元素 指标 | 样品数 N | 均值 X | 几何均值 X1 | 中位数 M | 标准离差 S | 变异系数 Cv | 最大值 Xmax | 最小值 Xmin | 剔除后 样品数 N1 | 背景值 X0 | K1 | K2 | SiO2 | 6392 | 54.91 | 54.87 | 54.80 | 2.14 | 0.04 | 68.33 | 40.33 | 6242 | 54.93 | 0.85 | 0.79 | Al2O3 | 6392 | 11.63 | 11.62 | 11.60 | 0.47 | 0.04 | 14.90 | 8.74 | 6092 | 11.60 | 0.89 | 1.24 | Fe2O3 | 6392 | 4.60 | 4.59 | 4.60 | 0.31 | 0.07 | 6.28 | 2.83 | 6258 | 4.60 | 1.06 | 1.39 | MgO | 6392 | 2.55 | 2.54 | 2.53 | 0.24 | 0.10 | 6.87 | 1.53 | 6226 | 2.54 | 1.74 | 1.40 | CaO | 6392 | 9.27 | 9.14 | 9.43 | 1.43 | 0.15 | 18.22 | 1.32 | 6276 | 9.35 | 3.36 | 1.76 | Na2O | 6392 | 1.67 | 1.67 | 1.67 | 0.16 | 0.10 | 2.47 | 0.58 | 6322 | 1.68 | 1.32 | 0.96 | K2O | 6392 | 2.57 | 2.56 | 2.54 | 0.23 | 0.09 | 4.03 | 1.01 | 6336 | 2.56 | 1.09 | 1.20 | Corg. | 6392 | 0.70 | 0.65 | 0.67 | 0.28 | 0.40 | 3.21 | 0.10 | 6237 | 0.68 | 0.63 | 1.74 | pH | 6392 | 8.33 | 8.33 | 8.34 | 0.18 | 0.02 | 9.71 | 7.34 | 6363 | 8.33 | 1.17 | 1.00 | As | 6392 | 13.10 | 13.02 | 12.95 | 1.49 | 0.11 | 27.90 | 4.55 | 6240 | 13.00 | 1.43 | 1.35 | B | 6392 | 54.97 | 54.68 | 54.19 | 5.92 | 0.11 | 131.12 | 30.87 | 6228 | 54.55 | 1.13 | 1.33 | Cd | 6392 | 0.15 | 0.15 | 0.15 | 0.02 | 0.16 | 0.52 | 0.09 | 6298 | 0.15 | 1.02 | 1.29 | Cl | 6392 | 65.23 | 61.70 | 58.19 | 30.35 | 0.47 | 864.26 | 25.09 | 5953 | 59.61 | 0.82 | 0.90 | Co | 6392 | 12.37 | 12.32 | 12.29 | 1.13 | 0.09 | 19.15 | 6.59 | 6268 | 12.33 | 1.05 | 1.37 | Cr | 6392 | 62.55 | 62.32 | 62.29 | 6.34 | 0.10 | 358.05 | 32.67 | 6226 | 62.44 | 0.99 | 1.16 | Cu | 6392 | 24.54 | 24.39 | 24.20 | 3.37 | 0.14 | 192.50 | 14.56 | 6226 | 24.31 | 1.07 | 1.43 | F | 6392 | 618.10 | 613.48 | 617.00 | 76.41 | 0.12 | 1702.00 | 313.00 | 6282 | 616.72 | 1.23 | 1.46 | Ge | 6392 | 1.22 | 1.21 | 1.22 | 0.06 | 0.05 | 1.52 | 0.77 | 6257 | 1.22 | 0.90 | 1.01 | Hg | 6392 | 24.18 | 22.28 | 20.97 | 15.71 | 0.65 | 479.93 | 5.02 | 5986 | 21.72 | 0.44 | 1.14 | I | 6392 | 2.41 | 2.27 | 2.17 | 1.01 | 0.42 | 20.26 | 0.41 | 5969 | 2.21 | 1.23 | 1.70 | Mn | 6392 | 645.24 | 643.58 | 642.00 | 47.47 | 0.07 | 1268.00 | 399.00 | 6263 | 643.48 | 1.17 | 1.36 | Mo | 6392 | 0.94 | 0.90 | 0.85 | 0.52 | 0.56 | 18.72 | 0.55 | 5905 | 0.86 | 1.29 | 1.39 | N | 6392 | 893.41 | 850.55 | 870.00 | 283.08 | 0.32 | 2834.00 | 256.00 | 6276 | 875.37 | 0.78 | 1.90 | Ni | 6392 | 32.49 | 32.32 | 32.27 | 3.60 | 0.11 | 168.00 | 16.58 | 6310 | 32.45 | 1.24 | 1.35 | P | 6392 | 813.01 | 801.12 | 793.00 | 143.90 | 0.18 | 2388.00 | 408.00 | 6319 | 807.07 | 1.18 | 1.88 | Pb | 6392 | 20.32 | 20.20 | 20.00 | 2.45 | 0.12 | 86.31 | 14.35 | 6216 | 20.09 | 0.79 | 1.12 | S | 6392 | 236.98 | 220.55 | 214.40 | 469.05 | 1.98 | 34480.00 | 121.50 | 6183 | 218.04 | 0.84 | 1.06 | Se | 6392 | 0.14 | 0.14 | 0.14 | 0.04 | 0.31 | 0.94 | 0.07 | 6244 | 0.14 | 0.63 | 0.93 | V | 6392 | 78.19 | 78.02 | 78.09 | 5.21 | 0.07 | 110.88 | 49.85 | 6254 | 78.09 | 0.98 | 1.26 | Zn | 6392 | 71.20 | 70.94 | 70.44 | 6.10 | 0.09 | 121.80 | 42.03 | 6169 | 70.80 | 1.05 | 1.48 |
|
Characteristics of geochemical in the whole region
|
元素 (指标) | 全区 背景值X | 不同成土母质富集系数K3 | 不同土地利用类型富集系数K4 | 冲积母质 n=1020 | 红土母质 n=571 | 黄土母质 n=4801 | 水浇地 n=1099 | 旱地 n=4334 | 林地 n=676 | 草地 n=132 | 其他 n=151 | SiO2 | 54.93 | 1.01 | 1.01 | 0.99 | 1.02 | 1.00 | 0.98 | 0.99 | 0.99 | Al2O3 | 11.60 | 1.00 | 1.05 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | Fe2O3 | 4.60 | 0.99 | 1.04 | 1.00 | 0.99 | 1.00 | 0.99 | 1.00 | 1.00 | MgO | 2.54 | 1.03 | 1.04 | 1.00 | 1.02 | 1.00 | 1.00 | 1.00 | 1.03 | CaO | 9.35 | 0.91 | 0.89 | 1.02 | 0.88 | 1.01 | 1.04 | 1.04 | 1.00 | Na2O | 1.68 | 1.01 | 0.95 | 1.00 | 1.00 | 1.01 | 0.96 | 0.99 | 0.98 | K2O | 2.56 | 1.03 | 1.01 | 0.99 | 1.03 | 1.00 | 0.99 | 0.97 | 1.00 | Corg. | 0.68 | 1.12 | 1.40 | 0.97 | 1.16 | 0.98 | 1.22 | 0.98 | 1.05 | pH | 8.33 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 1.01 | 1.01 | 1.01 | As | 13.00 | 1.01 | 1.05 | 1.00 | 1.02 | 1.00 | 1.02 | 0.99 | 1.03 | B | 54.55 | 1.06 | 1.10 | 0.99 | 1.08 | 0.99 | 1.03 | 0.98 | 1.03 | Cd | 0.15 | 1.07 | 1.09 | 0.98 | 1.08 | 0.99 | 1.01 | 0.95 | 1.01 | Cl | 59.61 | 1.46 | 1.02 | 1.02 | 1.41 | 1.04 | 0.92 | 1.00 | 1.29 | Co | 12.33 | 0.99 | 1.04 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 1.01 | Cr | 62.44 | 1.00 | 1.05 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.01 | Cu | 24.31 | 1.03 | 1.07 | 1.00 | 1.05 | 1.00 | 1.01 | 0.99 | 1.02 | F | 616.72 | 1.03 | 1.07 | 0.99 | 1.04 | 0.99 | 0.99 | 0.97 | 1.02 | Ge | 1.22 | 1.01 | 1.03 | 0.99 | 1.01 | 1.00 | 0.99 | 0.99 | 0.99 | Hg | 21.72 | 1.34 | 1.11 | 1.06 | 1.38 | 1.08 | 0.95 | 1.00 | 1.01 | I | 2.21 | 1.28 | 1.37 | 1.01 | 1.33 | 0.99 | 1.30 | 1.00 | 1.25 | Mn | 643.48 | 1.02 | 1.04 | 0.99 | 1.02 | 1.00 | 0.98 | 0.99 | 1.01 | Mo | 0.86 | 1.45 | 1.29 | 0.99 | 1.45 | 1.01 | 1.02 | 0.97 | 1.21 | N | 875.37 | 1.09 | 1.25 | 0.98 | 1.11 | 0.98 | 1.16 | 0.98 | 1.02 | Ni | 32.45 | 1.00 | 1.03 | 1.00 | 0.99 | 1.00 | 0.99 | 1.00 | 1.00 | P | 807.07 | 1.15 | 1.01 | 0.98 | 1.17 | 0.99 | 0.87 | 0.92 | 0.96 | Pb | 20.09 | 1.03 | 1.10 | 1.00 | 1.04 | 1.00 | 1.02 | 0.99 | 1.02 | S | 218.04 | 1.26 | 1.64 | 0.98 | 1.24 | 1.00 | 1.40 | 0.97 | 1.13 | Se | 0.14 | 1.27 | 1.09 | 0.96 | 1.29 | 0.95 | 1.06 | 0.94 | 1.14 | V | 78.09 | 0.99 | 1.03 | 1.00 | 0.99 | 1.00 | 0.99 | 0.99 | 1.01 | Zn | 70.80 | 1.03 | 1.05 | 0.99 | 1.04 | 1.00 | 0.99 | 0.98 | 1.01 |
|
Enrichment coefficient of different units
|
|
Enrichment coefficient of surface soil elements in different parent material
|
|
Enrichment coefficient of surface soil elements in different parent material
|
指标 | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | Fe2O3 | 0.84 | | | | | | | | | V | 0.83 | | | | | | | | | Ni | 0.82 | | | | | | | | | Cr | 0.82 | | | | | | | | | Mn | 0.79 | | | | | | | | | Zn | 0.69 | | | | | | | | | Al2O3 | 0.50 | | | | | | | | | Co | | 0.78 | | | | | | | | Pb | | 0.74 | | | | | | | | Cu | | 0.73 | | | | | | | | Cd | | 0.67 | | | | | | | | N | | | 0.87 | | | | | | | Corg. | | | 0.83 | | | | | | | pH | | | (-0.62) | | | | | | | As | | | | | | | | | | F | | | | 0.75 | | | | | | B | | | | 0.68 | | | | | | Ge | | | | 0.67 | | | | | | SiO2 | | | | | 0.86 | | | | | CaO | | | | | (-0.71) | | | | | Mo | | | | | | 0.79 | | | | Se | | | | | | 0.70 | | | | I | | | | | | | | | | Na2O | | | | | | | 0.80 | | | K2O | | | | | | | 0.80 | | | Hg | | | | | | | | 0.71 | | P | | | | | | | | 0.66 | | Cl | | | | | | | | | | S | | | | | | | | | 0.88 | MgO | | | | | | | | | 0.51 | 特征值 | 4.70 | 2.85 | 2.70 | 2.36 | 2.06 | 1.92 | 1.69 | 1.62 | 1.36 | 方差/% | 15.68 | 9.49 | 8.99 | 7.87 | 6.87 | 6.38 | 5.63 | 5.40 | 4.54 | 累积方差/% | 15.68 | 25.17 | 34.15 | 42.02 | 48.89 | 55.27 | 60.90 | 66.30 | 70.83 |
|
Orthogonal rotation factor load matrix,eigenvalue and cumulative variance contribution rate of factor analysis
|
|
Diagrams of factor scores in Study area
|
[1] |
陈同斌. 区域土壤环境质量[M]. 北京: 科学出版社, 2015.
|
[1] |
Chen T B. Regional soil environmental quality[M]. Beijing: Science Press, 2015.
|
[2] |
陈怀满. 环境土壤学[M]. 北京: 科学出版社, 2018.
|
[2] |
Chen H M. Environmental soil science[M]. Beijing: Science Press, 2018.
|
[3] |
奚小环. 生态地球化学:从调查实践到应用理论的系统工程[J]. 地学前缘, 2008, 15(5):1-8.
|
[3] |
Xi X H. Ecological geochemistry:Froma geochemistry survey to an applied theory[J]. Earth Science, 2008, 15(5):1-8.
|
[4] |
代杰瑞, 庞绪贵, 喻超, 等. 山东省东部地区土壤地球化学特征及污染评价[J]. 中国地质, 2011, 38(5):1387-1395.
|
[4] |
Dai J R, Pang X G, Yu C, et al. Geochemical features and contamination assessment of soil elements in east Shandong Province[J]. Geology in China, 2021, 38(5):1387-1395.
|
[5] |
赵庆令, 李清彩. 济宁南部区域耕作层土壤地球化学特征及其成因分析[J]. 地球与环境, 2016, 44(1): 25-35.
|
[5] |
Zhao Q L, Li Q C. Geochemical characteristics of plowing layer soil in south Jining Region,Shandong Province,China and its contribution factors[J]. Earth and Environment, 2016, 44(1):25-35.
|
[6] |
李欢, 黄勇, 张沁瑞, 等. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2):502-516.
|
[6] |
Li H, Huang Y, Zhang Q R, et al. Soil geochemical characteristics and influencing factors in Beijing Plain[J]. Geophysical and Geochemical Exploration, 2021, 45(2):502-516.
|
[7] |
李括, 彭敏, 赵传冬, 等. 全国土地质量地球化学调查二十年[J]. 地学前缘, 2019, 26(6):128-158.
|
[7] |
Li K, Peng M, Zhao C D, et al. Vicenial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6): 128-158.
|
[8] |
马贵, 韩新宁, 魏卫星, 等. 固原市表层土壤重金属空间分布及健康风险评价[J]. 宁夏师范学院学报, 2021, 42(4):51-60.
|
[8] |
Ma G, Han X N, Wei W X, et al. Distribution and health risk assessment of heavy metals in topsoil of urban aeras of Guyuan City[J]. Journal of Ningxia Normal University, 2021, 42(4):51-60.
|
[9] |
安宏英, 黄贵. 宁夏南部山区河流水资源状况及变化分析[J]. 宁夏农林科技, 2011, 52(12):261-265.
|
[9] |
An H Y, Huang G. Analysis of water resources status and changes of mountain rivers in Southern Ningxia[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2011, 52(12):261-265.
|
[10] |
李林科, 苏小兵, 刘彬, 等. 静宁县幅区域地质调查报告[R]. 兰州甘肃省地质调查院, 2004.
|
[10] |
Li L K, Su X B, Liu B, et al. Regional geological survey report of Jingning County[R]. Geological Survey of Gansu Province, 2004.
|
[11] |
吴学华, 倪万魁, 刘海松, 等. 宁夏回族自治区西吉县地质灾害详细调查报告[R]. 宁夏国土资源调查监测院, 2011.
|
[11] |
Wu X H, Ni W K, Liu H S, et al. Report on geological disasters in Xiji,Ningxia Hui Autonomous Region[R] Ningxia Institute of Land Resources Investigate and Monitor, 2011.
|
[12] |
徐建明, 于艳青, 王建中, 等. 宁南典型地区生态环境调查与生态建设模式成果报告[R]. 中国地质科学院水文地质环境地质研究所,2006.
|
[12] |
Xu J M, Yu Y Q, Wang J Z, et al. Ecological environment investigation and ecological construction model achievement report in the southern region of Ningxia Hui Autonomous Region[R]. Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences,2006.
|
[13] |
庞绪贵, 代杰瑞, 董健, 等. 山东省土壤地球化学基准值[J]. 山东国土资源, 2017, 33(11):43-47.
|
[13] |
Pang X G, Dai J R, Dong J, et al. Soil geochemical reference value in Shandong Province[J]. Shandong Land and Resources, 2017, 33(11):43-47.
|
[14] |
朱立新, 马生明, 王之峰. 中国东部平原土壤生态地球化学基准值[J]. 中国地质, 2006, 33( 6) :1400-1405.
|
[14] |
Zhu L X, Ma S M, Wang Z F, et al. Soil eco-geochemaical baseline in alluvial plains of eastern China[J]. Geology in China, 2006, 33(6):1400-1405.
|
[15] |
鲍丽然, 龚媛媛, 严明书, 等. 渝西经济区土壤地球化学基准值与背景值及元素分布特征[J]. 地球与环境, 2015, 43(1):31-40.
|
[15] |
Bao L R, Gong Y Y, Yan M S, et al. Element geochemical baseline and distributions in soil in Chongqing West Economic Zone,China[J]. Earth and Environment, 2015, 43(1):31-40.
|
[16] |
张秀芝, 杨志宏, 马忠社, 等. 地球化学背景与地球化学基准[J]. 地质通报, 2006, 25(5):626-629.
|
[16] |
Zhang X Z, Yang Z H, Ma Z S, et al. Geochemical background and geochemical baseline[J]. Geological Bulletin of China, 2006, 25(5):626-629.
|
[17] |
王乔林, 宋云涛, 王成文, 等. 滇西保山—临沧地区土壤元素背景值特征及成因分析[J]. 昆明理工大学学报:自然科学版, 2021, 2(46)37-50.
|
[17] |
Wang Q L, Song Y T, Wang C W, et al. Characteristics and genesis of soil element background Baoshan-Lincang area in Western Yunnan Province[J]. Journal of Kunming University of Science and Technology:Natural Sciences, 2021, 2(46):37-50.
|
[18] |
Wilding L P. Spatial variability:Its documentation,accommodation and implication to soil surveys[G]//Nielsen D R,Bouma J.Soil spatial variability. Wageningen:PUDOC publishers, 1985:166-194.
|
[19] |
王锐, 余涛, 杨忠芳, 等. 富硒土壤硒生物有效性及影响因素研究[J]. 长江流域资源与环境, 2018, 27(7):1647-1654.
|
[19] |
Wang R, Yu T, Yang Z F, et al. Bioavailability of soil selenium and its influencing factors in selenium-enriched soil[J]. Resources and Environment in the Yangtze Basin, 2018, 27(7):1647-1654.
|
[20] |
杨忠芳, 余涛, 侯青叶, 等. 海南岛农田土壤Se的地球化学特征[J]. 现代地质, 2012, 26(5):837-849.
|
[20] |
Yang Z F, Yu T, Hou Q Y, et al. Geochemical characteristics of soil selenium in farmland of Hainan Island[J]. Geoscience, 2012, 26(5):837-849.
|
[21] |
唐世琪, 万能, 曾明中, 等. 恩施地区土壤与农作物硒镉地球化学特征[J]. 物探与化探, 2020, 44(3):607-614.
|
[21] |
Tang S Q, Wan N, Zeng M Z, et al. Geochemical characteristics of selenium and cadmium in soil and crops in Enshi area[J]. Geophysical and Geochemical Exploration, 2020, 44(3):607-614.
|
[22] |
Li Z, Liang D L, Peng Q, et al. Interaction between selemium and soil organic matter and its impact on soil selenium bioavailability:Areview[J]. Geoderma, 2017, 295:69-79.
|
[23] |
侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.
|
[23] |
Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical dataset of China[M]. Beijing: Geological Publishing House, 2020.
|
[24] |
程旭学, 王雨山, 陆文庆, 等. 宁夏中南部严重缺水地区地下水勘查与供水安全示范成果报告[R]. 中国地质调查局水文地质环境地质调查中心,宁夏回族自治区地质调查院,2015.
|
[24] |
Cheng X X, Wang Y S, Lu W Q, et al. Report on demonstration results of groundwater exploration and water supply safety in severely water-deficient area in the middle and south of Ningxia[R]. Center for Hydrogeology and Environmental Geology,China Geological Survey,Geological Survey Institute of Ningxia Hui Autonomoug Region,2015.
|
[25] |
林才浩, 许美辉, 杨军华. 福建沿海经济带生态地球化学调查与评价[J]. 地质通报, 2007, 26(5):605-612.
|
[25] |
Lin C H, Xu M H, Yang J H. Eco-geochemical investigations and assessments of the coastal economic zone of Fujian Province,China[J]. Geological Bulletin of China, 2007, 26(5):605-612.
|
[26] |
孙启祥, 张建锋, Franz M. 不同土地利用方式土壤化学性状与酶学指标分析[J]. 水土保持学报, 2006, 20(4):98-101,159.
|
[26] |
Sun Q X, Zhang J F, Franz M. Evaluation of soil chemical properties and enzymes activity under different land use systems[J]. Journal of Soil and Water Conservation, 2006, 20(4):98-101,159.
|
[27] |
成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014, 21(3):265-306.
|
[27] |
Cheng H X, Li K, Li M, et al. Geochemical background and baseline value of chemical elements in urban soil in China[J]. Earth Science Frontiers, 2014, 21(3):265-306.
|
[28] |
吴海斌, 刘秀铭, 吕镔, 等. 中国黄土成因争论及其启示[J]. 亚热带资源与环境学报. 2016, 11(3):38-45.
|
[28] |
Wu H B, Liu X M, Lyu B, et al. Debates about the origin of loess and their significances[J]. Journal of Subtropical Resources and Environment, 2016, 11(3):38-45.
|
[29] |
余涛, 杨忠芳, 王锐, 等. 恩施典型富硒区土壤硒与其他元素组合特征及来源分析[J]. 土壤, 2018, 50(6):1119-1125.
|
[29] |
Yu T, Yang Z F, Wang R, et al. Characteristics and sources of soil selenium and other elements in typical high selenium soil area of Enshi[J]. Soils, 2018, 50(6):1119-1125.
|
[30] |
陈国光, 梁晓红, 张洁, 等. 丘陵区土地质量地球化学调查方法技术——以服务赣州六县精准脱贫土地质量地球化学调查为例[J]. 物探与化探, 2020, 44(3):463-469.
|
[30] |
Chen G G, Liang X H, Zhang J, et al. Geochemical survey method of land quality in hilly areas:A case study of the geochemical surveyof land quality in Canzhou[J]. Geophysical and Geochemical Exploration, 2020, 44(3):463-469.
|
[31] |
袁胜元, 李长安. 基于因子分析的江汉盆地第四纪沉积物源讨论[J]. 现代地质, 2014, 28(5):980-985.
|
[31] |
Yuan S Y, Li C A. Study on sediment provenances in Jianghan Basin since Quaternary based on factorial analysis[J]. Geoscience, 2014, 28(5):980-985.
|
[32] |
Zhang S, Yang D, Li F, et al. Determination of regional soil geochemical baselines for trace metals with principal compo-nent regression: A case study in the Jianghan plain,China[J]. Applied Geochemistry, 2014, 48:193-206
|
[33] |
刘景双, 杨继松, 于君宝, 等. 三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J]. 水土保持学报, 2003, 17(3):5-8.
|
[33] |
Liu J S, Yang J S, Yu J B, et al. Study on vertical distribution of soil organic carbon in Wetlands Sanjiang Plain[J]. Journal of Soil and Water Conservation, 2003, 17(3):5-8.
|
[1] |
JIANG Bing, LIU Yang, WU Zhen, ZHANG De-Ming, SUN Zeng-Bing, MA Jian. Geochemical characteristics of fluorine in irrigation water and soils in the Gaomi area, Shandong Province, China[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1348-1353. |
[2] |
NAN Zhe, WANG Lin-Shi, HOU Xu, ZHAI Zheng-Bo, WANG Yang, LIU Yang. Geological and geochemical characteristics and prospecting potential of rare element and rare earth element deposits in Saima alkaline complex[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 670-680. |
|
|
|
|