|
|
Research on Kalman filter method for weak signal extraction of airborne gravity |
WANG Guan-Xin1,2( ), LUO Feng1,2, ZHOU Xi-Hua1,2, YAN Fang3 |
1. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China 2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China 3. Beijing Institute of Automatic Control Equipment,Beijing 100074,China |
|
|
Abstract Airborne gravimetry uses aircraft as a carrier to collect data of gravity field. Due to the influence of air flow, flight state and body vibration, the original data of airborne gravity measurement contain a large amount of noise, and the SNR is as high as the grade of several thousand to ten thousand. This becomes a technical problem for the development of airborne gravity measurement system to obtain the weak gravity signal from the original measurement data. In this paper, the general Kalman filter formula with certain control was adjusted for adaptability based on airborne gravity measurement system, the mathematical model of the airborne gravity anomaly was established, and the Kalman filter state equation was proposed for measuring principle of the system. Finally, the authors solved the problem of gravity signal and differential GNSS signals matching and airborne gravity of weak signal extraction. After the test of airborne gravity measurement data, the proposed airborne gravity data solution method can be used to solve airborne gravity anomalies with high accuracy, and the result is better than the FIR low-pass filter (currently used in engineering) solution results, which promotes the development of airborne gravity weak signal extraction technology.
|
Received: 08 September 2020
Published: 01 March 2021
|
|
|
|
|
|
Power spectrum analysis diagram of corrected gravity data
|
|
Power spectrum analysis diagram of differential GNSS height data
|
|
Comparison of vertical velocity (red line) and first derivative of height (blue line) calculated by differential GNSS
|
滤波方法 | FIR100s | 卡尔曼滤波 | 重复线内符合精度/mGal | 0.659 | 0.605 |
|
The internal accord accuracy of repeat lines of different filters for airborne gravity anomaly measured by the strapdown gravimeter
|
|
The internal accord accuracy of repeat lines of FIR100s filter for airborne gravity anomaly
|
|
The internal accord accuracy of repeat lines of Kalman filter for airborne gravity anomaly
|
滤波方法 | FIR100s | 卡尔曼滤波 | 重复线内符合精度/mGal | 0.719 | 0.470 |
|
The internal accord accuracy of repeat lines of different filters for airborne gravity anomaly measured by the platform gravimeter
|
|
The internal accord accuracy of repeat lines of FIR100s filter for airborne gravity anomaly (in steady-state flight condition)
|
|
The internal accord accuracy of repeat lines of Kalman filter for airborne gravity anomaly (in steady-state flight condition)
|
|
The internal accord accuracy of repeat lines of FIR100s filter for airborne gravity anomaly (in steady-state and maneuvering flight condition)
|
|
The internal accord accuracy of repeat lines of Kalman filter for airborne gravity anomaly (in steady-state and maneuvering flight condition)
|
[1] |
郭志宏, 罗锋, 安战锋. 航空重力数据窗函数法FIR低通数字滤波试验[J]. 物探与化探, 2007,31(6):568-571.
|
[1] |
Guo Z H, Luo F, An Z F. Experimental researches on FIR lowpass digital filters based on window functions of airborne gravity data[J]. Geophysical and Geochemical Exploration, 2007,31(6):568-571,576.
|
[2] |
蔡劭琨, 吴美平, 张开东, 航空重力测量中FIR低通滤波器的比较[J]. 物探与化探, 34(1):74-78.
|
[2] |
Cai S K, Wu M P, Zhang K D. A comparision of digital lowpass FIR-filters in airborne gravimetry[J]. Geophysical and Geochemical Exploration, 2010,34(1):74-78.
|
[3] |
王静波, 熊盛青, 郭志宏, 等. 航空重力数据Kalman滤波平滑技术应用研究[J]. 地球物理学进展, 2012,27(4):1717-1722.
|
[3] |
Wang J B, Xiong S Q, Guo Z H, et al. Kalman smoothing for airborne gravity data[J]. Progress in Geophysics, 2012,27(4):1717-1722.
|
[4] |
蔡体菁, 周薇, 鞠玲玲. 平台式重力仪测量数据的卡尔曼滤波处理[J]. 中国惯性技术学报, 2015,23(6):718-720.
|
[4] |
Cai T J, Zhou W, Ju L L. Kalman filter processing of platform gravimeter measurement data[J]. Chinese Journal of Inertial Technology, 2015,23(6):718-720.
|
[5] |
郑崴, 张贵宾. 自适应卡尔曼滤波在航空重力异常解算的应用研究[J]. 地球物理学报, 2016,59(4):1275-1283.
|
[5] |
Zheng W, Zhang G B. Application research on adaptive Kalman filtering for airborne gravity anomaly determination[J]. Chinese J. Geophys., 2016,59(4):1275-1283.
|
[6] |
王冠鑫. 航空重力数据去噪方法研究与GeoProbe平台插件实现[D]. 北京:中国地质大学北京)(, 2018.
|
[6] |
Wang G X. The research on airborne gravity data denoising method and GeoProbe platform plug-in implementation[D]. Beijing: China University of Geosciences(Beijing), 2018.
|
[7] |
秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理(第三版)[M]. 西安: 西北工业大学出版社, 2015.
|
[7] |
Qin Y Y, Zhang H Y, Wang S H. Kalman filter and principle of integration 3rd[M]. Xi’an: Northwestern Polytechnical University Press, 2015.
|
[8] |
孙中苗. 航空重力测量理论、方法及应用研究[D]. 郑州: 中国人民解放军信息工程大学, 2004.
|
[8] |
Sun Z M. Theory, methods and applications of airborne gravimetry[D]. Zhengzhou: PLA Information Engineering University, 2004.
|
[9] |
熊盛青. 我国航空重磁勘探技术现状与发展趋势[J]. 地球物理学进展, 2009,24(1):113-117.
|
[9] |
Xiong S Q. The present situation and development of airborne gravity and magnetic survey techniques in China[J]. Progress in Geophysics, 2009,24(1):493-498.
|
[10] |
Bolotin Y V. Mathematics behind GTGRAV[C]// Laboratory of Control and Navigation, Moscow Lomonosov State University, 2009.
|
[11] |
Rauch H E, Tung T, Striebel C T. Maximum likelihood estimates of linear dynamic Systems[J]. AIAA’ Journal, 1965,3(8):1445-1450.
|
[12] |
Bolotin Y V, Popelensky M Y. Accuracy analysis of airborne gravity when gravimeter parameters are identified in flight[J]. Journal of Mathematical Sciences, 2007,146(3):5911-5919.
|
[13] |
胡平华, 赵明, 黄鹤, 等. 航空/海洋重力测量仪器发展综述[J]. 导航定位与授时, 2017,7(7):10-18.
|
[13] |
Hu P H, Zhao M, Huang H, et al. Overview of the development of aeronautical/oceanic gravimetric instruments[J]. Navigation, positioning and timing, 2017,7(7):10-18.
|
[14] |
Bolotin Y V, Fedorov A V. Accuracy analysis using repeated flight paths[J]. Moscow University Mechanics Bulletin, 2008,63(3):60-67
|
[15] |
郭志宏, 熊盛青, 周坚鑫, 等. 航空重力重复线测试数据质量评价方法研究[J]. 地球物理学报, 2008,51(5):1538-1543.
|
[15] |
Guo Z H, Xiong S Q, Zhou J X, et al. The research on quality evaluation method of test repeat lines in airborne gravity survey[J]. Chinese J. Geophys., 2008,51(5):1538-1543.
|
[16] |
姜作喜, 张虹, 郭志宏. 航空重力测量内符合精度计算方法[J]. 物探与化探, 2010,34(5):672-676.
|
[16] |
Jiang Z X, Zhang H, Guo Z H. Calculating method of internal coincidence accuracy in airbore gravimetry[J]. Geophysical and Geochemical Exploration, 2010,34(5):672-676.
|
[1] |
LUO Feng, ZHOU Xi-Hua, HU Ping-Hua, JIANG Zuo-Xi, WANG Guan-Xin, QU Jin-Hong, LI Xing-Su, LI Zhao-Liang, ZHAO Ming. Research on localization of platform-based airborne gravity exploration system[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1256-1265. |
[2] |
MENG Qing-Kui, ZHOU Jian-Xin, SHU Qing, GAO Wei, XU Guang-Jing, WANG Chen-Yang. Application effect of Kalman filter in airborne full tensor magnetic gradient measurement based on theoretical model[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 473-479. |
|
|
|
|