|
|
Application effect of Kalman filter in airborne full tensor magnetic gradient measurement based on theoretical model |
MENG Qing-Kui1,2( ), ZHOU Jian-Xin1,2, SHU Qing1,2, GAO Wei2, XU Guang-Jing2, WANG Chen-Yang2 |
1. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China 2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China |
|
|
Abstract The aero full tensor magnetic gradient data contain complex motion noise, which is distributed from low frequency to high frequency in the spectrum, and is mainly white noise. So, how to effectively suppress the motion noise is a great challenge. The traditional digital filtering can only filter the noise with the specified frequency band, but it can not effectively separate the noise mixed in the full tensor magnetic gradient useful signal. In view of the fact that Kalman filter is a fast, efficient and real-time optimization estimation method, the authors applied it to the aero magnetic full tensor gradient data processing, and built the state equation and observation equation reasonably. Model test proves that the method is effective and can be applied to real-time processing of aeromagnetic full tensor gradient data.
|
Received: 16 June 2020
Published: 29 April 2021
|
|
|
|
|
|
Full tensor magnetic gradient of sphere model
|
|
Full tensor magnetic gradient of noisy sphere model
|
|
Filtered full tensor magnetic gradient of sphere model
|
|
Comparison of Bxx ,Byyand Bzz with before and after filtering(profile Y=500 m)
|
|
Comparison of Bxy ,Bxz and Byzwith before and after filtering (profile Y=500 m)
|
|
Full area noise-reduction factor and mean square error
|
| Bxx | Byy | Bzz | Bxy | Bxz | Byz | 噪声衰减因子 | 0.9212 | 0.9668 | 0.9613 | 0.9413 | 0.9560 | 0.9593 | 均方误差/(pT·m-1) | 8.5 | 5.7 | 6.7 | 7.5 | 6.6 | 6.2 |
|
Quantitative statistics of Kalman filtering results of typical profile (Y=500 m)
|
[1] |
Gamey T J, Doll W E, Beard L P. Initial design and testing of a full-tensor airborne SQUID magnetometer for detection of unexploded ordnance[J]. SEG Technical Program Expanded Abstracts. SEG, 2004, 798-801.
|
[2] |
Schmidt P W, Clark D A. The magnetic gradient tensor: It̓s properties and uses in source characterization[J] . The Leading Edge, 2006,25(1):75-78.
|
[3] |
Stolz R, Zakosarenko V, Schulz M, et al. Magnetic full tensor SQUID gradiometer system for geophysical applications[J]. The Leading Edge, 2006,25(2):178-180.
|
[4] |
申茂冬. 高温超导全张量磁梯度测量技术研究[D]. 长春:吉林大学, 2017.
|
[4] |
Shen M D. Study on technology for high temperature superconducting full tensor magnetic gradient measurement[D]. Changchun: Jilin University, 2017.
|
[5] |
申茂冬, 程德福, 安战峰, 等. 五棱台式全张量磁梯度探头侧面倾角优化方法[J]. 吉林大学学报:工学版, 2016,46(5):1732-1738.
|
[5] |
Shen M D, Chen F D, An Z F, et al. Optimization of slanting surfaces of five-sided pyramidal full tensor magnetic gradient probe[J]. Journal of Jilin University:Engineering and Technology Edition, 2016,46(5):1732-1738.
|
[6] |
伍俊, 荣亮亮, 孔祥燕, 等. 基于Cortex-M3的航空超导磁测量平台振动监测仪[J]. 仪表技术与传感器, 2016,(1):22-25.
|
[6] |
Wu J, Rong L L, Kong X X, et al. Vibration monitor based on cortex-m3 for aviation superconducting magnetic measurement platform[J]. Instrument Technique and Sensor, 2016,(1):22-25.
|
[7] |
伍俊, 邱隆清, 孔祥燕, 等. 基于GPS同步的新型低温超导磁力仪[J]. 传感器技术学报, 2015,28(9):1347-1353.
|
[7] |
Wu J, Qiu L Q, Kong X X, et al. A novel low temperature SQUID magnetometer based on GPS synchronization[J]. Chinese Journal of Sensors and Actuators, 2015,28(9):1347-1353.
|
[8] |
王士良, 邱隆清, 王永良, 等. 航空超导全张量磁梯度仪的串扰研究[J]. 低温物理学报, 2017,39(1):36-40.
|
[8] |
Wang S L, Qiu L Q, Wang Y L, et al. Study on Crosstalk of an airborne magnetic full tensor SUQID gradiometer system[J]. Chinese Journal of Low Temperature Physics, 2017,39(1):36-40.
|
[9] |
张光, 张英堂, 尹刚, 等. 一种磁张量探测系统载体的磁张量补偿方法[J]. 地球物理学报, 2016,59(1):311-317.
|
[9] |
Zhang G, Zhang Y T, Yin G, et al. Magnetic tensor compensation method for the carrier of the magnetic tensordetection system[J]. Chinese J. Geophys., 2016,59(1):311-317.
|
[10] |
张兴东. 卡尔曼滤波在全张量磁梯度数据处理中的应用[D]. 北京:中国地质大学(北京), 2015.
|
[10] |
Zhang X D. Application of Kalman Filtering in the magnetic full tensor gradiometer data processing [D]. Beijing: China University of Geosciences(Beijing), 2015.
|
[11] |
舒晴, 马国庆, 刘财, 等. 全张量磁梯度数据解释的均衡边界识别及深度成像技术[J]. 地球物理学报, 2018,61(4):1539-1548.
|
[11] |
Shu Q, Ma G Q, Liu C, et al. Balanced edge detection and depth imaging technique for the interpretation of full tensor magnetic gradient data[J]. Chinese J. Geophys., 2018,61(4):1539-1548.
|
[12] |
骆遥, 姚长利. 长方体磁场及其梯度无解析奇点表达式理论研究. 石油地球物理勘探, 2007,42(6):714-719.
|
[12] |
Luo Y, Yao C L. Theoretical study on cuboid magnetic field and gradient expression without singular point[J]. Oil Geophysical Prospecting, 2007,42(6):714-719.
|
[13] |
钟炀, 管彦武, 石甲强, 等. 利用IGRF 模型计算全张量地磁梯度[J]. 物探与化探, 2020,44(3):582-590.
|
[13] |
Zhong Y, Guan Y W, Shi J Q, et al. The calculation method of full tensor geomagnetic gradient based on IGRF model[J]. Geophysical and Geochemical Exploration, 2020,44(3):582-590.
|
[14] |
钟炀, 管彦武, 石甲强, 等. 长方体全张量磁梯度的两种正演公式对比[J]. 世界地质, 2019,38(4):1073-1081,1090.
|
[14] |
Zhong Y, Guan Y W, Shi J Q, et al. Comparison of two forward modeling formulas for full tensor magnetic gradient of cuboid[J]. Global Geology, 2019,38(4):1073-1081,1090.
|
[15] |
周德文, 孟庆奎, 杨怡, 等. 航磁全轴梯度异常特征研究[J]. 物探与化探, 2018,42(3):583-588.
|
[15] |
Zhou D W, Meng Q K, Yang Y, et al. Study on characteristics of three axis airborne magnetic gradient anomaly[J]. Geophysical and Geochemical Exploration, 2018,42(3):583-588.
|
[16] |
Ji S X, Zhang H, Wang Y F, et al. Three dimensional inversion of full magnetic gradient tensor data based on hybrid regularization method[J]. Geophysical Prospecting, 2019,67(1):226-261.
|
[17] |
吴招才. 磁力梯度张量技术及其应用研究[D]. 武汉:中国地质大学(武汉), 2008.
|
[17] |
Wu Z C. Magnetic gradient tensor technology and its application[D]. Wuhan: China University of Geosciences(Wuhan), 2008.
|
[18] |
郑婷. 全张量 SQUID磁梯度计在航空磁测方面的应用研究[J]. 超导技术, 2015,43(10):41-44.
|
[18] |
Zheng T. Research on application of airborne magnetometry using full tensor squid gradiometer[J]. Superconductivity, 2015,43(10):41-44.
|
[19] |
Luo Y, Wu M P, Wang P, et al. Full magnetic gradient tensor form triaxial aero magnetic gradient measurements: Calculation and application[J]. Applied Geophysics, 2015,12(3):283-291.
|
[20] |
孟庆奎, 周德文, 高维, 等. 国内外航磁补偿技术历史与展望[J]. 物探与化探, 2017,41(4):694-699.
|
[20] |
Meng Q K, Zhou D W, Gao W, et al. History and prospects of aeromagnetic compensation technologies used in China and abroad[J]. Geophysical and Geochemical Exploration, 2017,41(4):694-699.
|
[21] |
王静波, 熊盛青, 郭志宏, 等. 航空重力数据Kalman滤波平滑技术应用研究[J]. 地球物理学进展, 2012,27(4):1717-1722.
|
[21] |
Wang J B, Xiong S Q, Guo Z H, et al. Application of Kalman filtering smoothing technique for aeronautical gravity data[J]. Progressin Geophysics, 2012,27(4):1717-1722.
|
[22] |
蔡体菁, 周薇, 鞠玲玲. 平台式重力仪测量数据的卡尔曼滤波处理[J]. 中国惯性技术学报, 2015,23(6):718-720.
|
[22] |
Cai T J, Zhou W, Ju L L. Kalman filter processing of platform gravimeter measurement data[J]. Chinese Journal of Inertial Technology, 2015,23(6):718-720.
|
[23] |
罗锋, 王冠鑫, 周锡华, 等. 三轴稳定平台式航空重力测量数据处理方法研究与实现[J]. 物探与化探, 2019,43(4):872-880.
|
[23] |
Luo F, Wang G X, Zhou X H, et al. Research and implementation of data processing method for the three-axis stabilized platform airborne gravity measuring system[J]. Geophysical and Geochemical Exploration, 2019,43(4):872-880.
|
[24] |
Grewal M S, Andrews A P. Kalman filtering theory and practice using MATLAB[M]. New York: Wiley, 2008: 133-138.
|
[25] |
Pajot G, Viron O D, Diament M, et al. Noise reduction through joint processing of gravity and gravity gradient data[J]. Geophysics, 2008,73(3):I23.
|
[1] |
ZHU Jian-Bing, GAO Zhao-Qi, TIAN Ya-Jun, LIANG Xing-Cheng. Globally optimized seismic impedance inversion with lateral constraints and its application[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1477-1484. |
[2] |
YUE Hang-Yu, WANG Xiao-Jiang, WANG Lei, CHEN Xiao-Qiang, JIANG Chun-Xiang, LI Pei, ZHANG Bao-Wei. Key techniques for seismic data processing of deep metal deposits:A case study of the Chaganhua molybdenum orefield in Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1315-1326. |
|
|
|
|