|
|
A study of the application of Curvelet transform to potential field signal extraction |
ZHANG Yang1( ), WANG Jun-Heng1( ), CAO Lian-Peng2, FENG Yu-Hua2, ZHU Jiang-Huang2, FU Qiang2 |
1. School of Geophysics and Information Technology,China University of Geosciences(Beijing), Beijing 100083,China 2. Center for Environmental Monitoring of Geology,Shenzhen 518034,China |
|
|
Abstract In order to separate and extract the effective signals from gravity and magnetic data, the authors studied a method developed in the past ten years—Curvelet transform method. Starting with the basic principles of the Curvelet transform, the authors analyzed the multi-scale decomposition and reconstruction ability of the Curvelet transform through the theoretical model data of the gravity potential field, and analyzed the threshold denoising ability of the Curvelet transform by the noise-added theoretical model data. In addition, the Curvelet transform was used to extract effective signals from the Bouguer gravity anomaly data in the eastern part of Nanling. The results verify that the method can be applied to both the decomposition and denoising processing of potential field data. The results provide a reference for the multi-scale analysis and processing of gravity and magnetic data as well as a certain indication for actual data.
|
Received: 14 August 2020
Published: 01 March 2021
|
|
Corresponding Authors:
WANG Jun-Heng
E-mail: 405350764@qq.com;w1128@cugb.edu.cn
|
|
|
|
层次 | 尺度系数 | 方向参数个数 | 矩阵形式 | 矩阵形式 | 矩阵形式 | 矩阵形式 | 矩阵形式 | 粗糙层 | C{1} | 1 | 21×21 | | | | | 细节层 | C{2} | 16 | | 18×22 | 16×22 | 22×18 | 22×16 | | C{3} | 32 | | 34×22 | 32×22 | 22×34 | 22×32 | | C{4} | 32 | | 67×44 | 64×43 | 64×44 | 44×64 | | C{5} | 64 | | 131×44 | 128×43 | 128×44 | 44×128 | 精细层 | C{6} | 1 | 512×512 | | | | |
|
Curvelet coefficient structure of 512×512 data
|
|
Vertical hexahedron combined gravity anomaly
|
|
Reconstructed graph of gravity anomaly with coefficients decomposed by Curvelet transform
|
|
The reconstructed gravity anomaly map after the decomposition of the Curvelet transform
|
模型体 序号 | 直立六面体角点坐标/km | 剩余密度 ρ/(kg·m-3) | x1 | x2 | y1 | y2 | z1 | z2 | A1 | 6 | 8 | 12 | 13 | 0.4 | 0.8 | 250 | A2 | 13 | 14 | 7 | 9 | 0.5 | 0.9 | 300 | A3 | 5 | 7 | 5 | 6.5 | 0.5 | 1 | 500 | B1 | 5 | 9 | 11 | 19 | 1.5 | 3 | 250 | B2 | 10 | 20 | 5 | 12 | 1.5 | 3 | -100 |
|
Field source parameter statistics table of vertical hexahedron
|
|
The reconstructed image with noise-added data using Curvelet transform
|
|
Curvelet transform threshold denoising of noise-added data (add 10% amplitude random noise,sigma=0.8)
|
|
Curvelet transform threshold denoising of noise-added data (add 5% amplitude random noise,sigma=0.45)
|
|
Curvelet transform threshold denoising of noise-added data (add 1% amplitude random noise,sigma=0.15)
|
|
Bouguer gravity anomaly map of EGM2008 in the eastern part of Nanling
|
|
Topographic map of the study area
|
|
The reconstructed gravity anomaly map using Curvelet transform
|
|
Geological sketch map of eastern Nanling
|
|
Comparison of geological sketch map (a) and gravity anomaly map (b) of eastern Nanling
|
[1] |
熊盛青. 我国航空重磁勘探技术现状与发展趋势[J]. 地球物理学进展, 2009,24(1):113-117.
|
[1] |
Xiong S Q. The present situation and development of airborne gravity and magnetic survey techniques in China[J]. Progress in Geophysics, 2009,24(1):113-117.
|
[2] |
柳建新, 孙欢乐, 陈波, 等. 重磁方法在国内外金属矿中的研究进展[J]. 地球物理学进展, 2016,31(2):713-722.
|
[2] |
Liu J X, Sun H L, Chen B, et al. Review of the gravity and magnetic methods in the exploration of metal deposits[J]. Progress in Geophysics, 2016,31(2):713-722.
|
[3] |
邢怡. 重磁异常分离方法技术研究[D]. 北京:中国地质大学(北京), 2008.
|
[3] |
Xing Y. Research in the method of separating anomalous gravity and magnetic data[D]. Beijing:China University of Geosciences(Beijing), 2008.
|
[4] |
刘金兰. 重磁位场新技术与山西断陷盆地构造识别划分研究[D]. 西安:长安大学, 2008.
|
[4] |
Liu J L. Development new technologies for potential field processing and research on the tectonic recognition division of shanxi fault basin[D]. Xi'an:Chang'an University, 2008.
|
[5] |
Candès E, Donoho D. Curvelets:A surprisingly effective nonadaptive representation of objects with edges[M]. TN: Vanderbilt University Press, 1999.
|
[6] |
Candès E, Donoho D. New tight frames of curvelets and optimal representations of objects with C2 singularities[R]. Stanford:Technical Report, 2002.
|
[7] |
Candès E, Demanet L. Curvelets and Fourier integral operators[R]. To appear in Comptes-Rendus del’Academie des Sciences,Paris,Serie I, 2002.
|
[8] |
Candès E, Guo F. New multiscale transforms,minimum total variation synjournal: Applications to edge-preserving image reconstruction[J]. Signal Processing, 2002,82:1519-1543.
|
[9] |
Candès E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms[J]. SI-AM Multiscale Modeling and Simulation, 2006,5:861-899.
|
[10] |
Herrmann F J, Wang D L, Hennenfent G. Multiple prediction from incomplete data with the focused curvelet transform[C]// Society of Exploration Geophysicists,Expanded Abstracts, 2007: 2505-2509.
|
[11] |
Ramesh N, Domimique G, Mohamed T, et al. Coherent and random noise attenuation using the curvelet transform[J]. The Leading Edge, 2008,27(2):240-248.
|
[12] |
Huub D, Maarten V. Wave-character preserving pre-stack map migration using curvelets[C]// Society of Exploration Geophysicists,Expanded Abstracts, 2004: 961-964.
|
[13] |
单昊. 基于几何小波的多目标图像分割与地震去噪[D]. 北京:清华大学, 2010.
|
[13] |
Shan H. Geometric wavelet based image segmentation with multiple objects and seismic denoising[D]. Beijing:Tsinghua University, 2010.
|
[14] |
邱菊. 基于小波变换和二代曲波变换的乳腺钼靶X片图像增强[D]. 长春:吉林大学, 2009.
|
[14] |
Qui J. The enhancement of molybdenum target X-ray image based on wavelet transform and the second generation Curvelet transform[D]. Changchun:Jilin University, 2009.
|
[15] |
朱为, 李国辉, 涂丹. 一种基于第2代曲波变换的尺度相关图像去噪方法[J]. 中国图象图形学报, 2008,13(12):2281-2285.
|
[15] |
Zhu W, Li G H, Tu D. A scale correlation image denoising method based on the second generation Curvelet transform[J]. Journal of Image and Graphics, 2008,13(12):2281-2285.
|
[16] |
杨俊, 李静和, 孟淑君, 等. 小波与曲波变换探地雷达数据去噪对比分析[J]. 地球物理学进展, 2019,34(5):2097-2105.
|
[16] |
Yang J, Li J H, Meng S J, et al. Comparative analysis of ground penetrating radar data denoising with wavelet transform and curvelet transform[J]. Progress in Geophysics, 2019,34(5):2097-2105.
|
[17] |
李红雨, 杨长保, 吴燕冈, 等. 小波变换在位场资料去噪和位场分离中的应用[J]. 世界地质, 2014,33(1):200-208.
|
[17] |
Li H Y, Yang C B, Wu Y G, et al. Application of wavelet transform for de-noising and potential field separation in gravity and magnetic data processing[J]. Global Geology, 2014,33(1):200-208.
|
[18] |
隋成兴. 曲波变换在地震信号处理中的应用研究[D]. 西安:长安大学, 2014.
|
[18] |
Sui C X. Study on the applications of Curvelet transform in seismic data processing [D]. Xi’an:Chang'an University, 2014.
|
[19] |
张华, 陈小宏, 李红星, 等. 曲波变换三维地震数据去噪技术[J]. 石油地球物理勘探, 2017,52(2):226-232+192.
|
[19] |
Zhang H, Chen X H, Li H X, et al. 3D seismic data de-noising approach based on Curvelet transform[J]. Oil Geophysical Prospecting, 2017,52(2):226-232,192.
|
[20] |
董烈乾, 李振春, 王德营, 等. 第二代Curvelet变换压制面波方法[J]. 石油地球物理勘探, 2011,46(6):897-904,1012,831-832.
|
[20] |
Dong L Q, Li Z C, Wang D Y, et al. Ground-roll suppression based on the second generation Curvelet transform[J]. Oil Geophysical Prospecting, 2011,46(6):897-904,1012,831-832.
|
[21] |
杨扬, 戴明, 周箩鱼. 基于均匀离散曲波变换的多聚焦图像融合[J]. 红外与激光工程, 2013,42(9):2547-2552.
|
[21] |
Yang Y, Dai M, Zhou L Y. Uniform discrete Curvelet transform for multi-focus image fusion[J]. Infrared and Laser Engineering, 2013,42(9):2547-2552.
|
[22] |
陈召曦. 位场数据的曲波变换与信息提取应用[D]. 北京:中国地质大学(北京), 2012.
|
[22] |
Chen Z X. The Curvelet transform and its application to information extraction for potential data[D]. Beijing:China University of Geosciences(Beijing), 2012.
|
[23] |
郇恒飞. 重力数据综合处理与解释在钾盐矿区的应用研究[D]. 长春:吉林大学, 2013.
|
[23] |
Huan H F. Study on integrated processing and interpretation of gravity data for the application in sylvite mine[D]. Changchun:Jilin University, 2013.
|
[24] |
高铁, 郇恒飞, 徐英奎, 等. Curvelet变换在位场数据去噪中的应用[J]. 世界地质, 2014,33(3):671-679.
|
[24] |
Gao T, Huan H F, Xu Y K, et al. Application of Curvelet transform denoising in potential field data[J]. Global Geology, 2014,33(3):671-679.
|
[25] |
杨斯涵. 重磁位场分离及边界识别方法研究[D]. 成都:成都理工大学, 2015.
|
[25] |
Yang S H. Study on the separation of gravity and magnetic potential field and boundary recognition method[D]. Chengdu:Chengdu University of Technology, 2015.
|
[26] |
杨文采. 揭开南岭地壳形成演化之谜[J]. 地质论评, 2016,62(2):257-266.
|
[26] |
Yang W C. Raise the curtain on formation and evolution of Nanling mountains[J]. Geological Review, 2016,62(2):257-266.
|
[27] |
陈国雄, 刘天佑, 孙劲松, 等. 南岭成矿带多尺度重力场及深部构造特征——《地球科学——中国地质大学学报》征稿简则[J]. 地球科学:中国地质大学学报, 2014,39(2):240-251.
|
[27] |
Cheng G X, Liu T Y, Sun J S, et al. Characteristics of multi-scale gravity field and deep structures in Nanling metallogenic belt 《Earth Science—Journal of China University of Geosciences》[J]. Earth Science:Journal of China University of Geosciences, 2014,39(2):240-251.
|
[28] |
陈骏, 王汝成, 朱金初, 等. 南岭多时代花岗岩的钨锡成矿作用[J]. 中国科学:地球科学, 2014,44(1):111-121.
|
[28] |
Chen J, Wang R C, Zhu J C, et al. Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range,South China[J]. Science China: Earth Sciences, 2014,44(1):111-121.
|
[29] |
孙劲松. 南岭成矿带重磁场特征研究[D]. 武汉:中国地质大学, 2013.
|
[29] |
Sun J S. Study on the characteristics of gravity and magnetic field in Nanling Metallogenic Belt[D]. Wuhan:China University of Geosciences, 2013.
|
[30] |
徐先兵, 梁承华, 陈家驹, 等. 南岭构造带基础地质特征与成矿地质背景[J/OL]. 地球科学, 2020. http://kns.cnki.net/kcms/detail/42.1874.P.20200617.1745.006.html.
|
[30] |
Xu X B, Liang C H, Chen J J, et al. Fundamental geological features and metallogenic geological backgrounds of the Nanling Tectonic Belt[J/OL]. Earth Science, 2020. http://kns.cnki.net/kcms/detail/42.1874.P.20200617.1745.006.html.
|
[31] |
罗凡, 严加永, 付光明, 等. 华南地区地壳厚度变化及对成矿类型的制约:来自卫星重力数据的约束[J]. 中国地质, 2019,46(4):759-774.
|
[31] |
Luo F, Yan J Y, Fu G M, et al. Crust thickness and its apocalyptic of mineralization in South China:Constraint from Satellite Gravity data[J]. Geology in China, 2019,46(4):759-774.
|
[1] |
XIE Xing-Long, MA Xue-Mei, LONG Hui, MING Yuan-Yuan, SUN Sheng. Curvelet transform-based denoising of resonance interference induced by electrical poles in seismic exploration[J]. Geophysical and Geochemical Exploration, 2022, 46(2): 474-481. |
[2] |
LIU Shi-You, ZHANG Ming-Lin, SONG Wei-Qi. Stretch correction method based on Curvelet sparse transform[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 114-122. |
|
|
|
|