|
|
Application of comprehensive geophysical and geochemical exploration in a porphyry lead-zinc deposit in Hebei and its prospecting effect |
ZHEN Li-Chao( ), LI Yu-Tang, ZHAO Bo, JIANG Yu-Wei, ZHAI Da-Xing |
Hebei Institute of Geophysical Exploration,Langfang 065000,China |
|
|
Abstract A lead-zinc deposit in Hebei Province is the only medium-sized porphyry lead-zinc deposit in Yanshan area, Many years' geological exploration work after its discovery has not made major prospecting breakthrough.After comprehensive research on geophysical and geochemical exploration and geological data obtained over the years in combination with a series of work such as high-power IP area measurement,it is believed that the anomalous elements of geochemical exploration in this area are obviously in zoning form, the anomaly of the electrical shock is obvious, the metallogenic series is complete, and the prospecting potential is large.Through drilling verification, thick high-grade lead-zinc deposits were found in the periphery of the porphyry and in the contact zone,copper and molybdenum deposits were found in the depth, which form a complete metallogenic series of porphyry deposits. Therefore, a new breakthrough in prospecting in this area has been realized. This area has a potential to become a large lead-zinc deposit, thus further expanding the resource prospect of the region.
|
Received: 08 April 2020
Published: 29 April 2021
|
|
|
|
|
|
Geologicalmap of a porphyry lead-zinc deposit in Hebei 1—Quaternary sestem;2—Jurassic Houcheng formation conglomerate, rhyolite tuff; 3—Jurassic Nandaling, Xiahuayuan formation conglomerate, sandstone and thin coal;4—thick conglomerate intercalated with sandstone in the Xingshikou formation of Triassic;5—giant thick layer (containing manganese) dolomite in the second member of the Gaoyuzhuang formation of the Great Wall system;6—gray-black thick flint zone dolomite in the first member of the Gaoyuzhuang formation of the Great Wall system;7—thick layered quartz sandstone and flint dolomite of Dahongyu formation of Great Wall system;8—purple-red and off-white argillaceous dolomite and flint-bearing dolomite of Tuanshanzi formation of Great Wall system;9— iron-bearing quartz coarse sandstone and green shale of Chuanlinggou formation of Great Wall system;10—gray-white giant thick layered quartzite sandstone of the third member of Changzhougou formation of Great Wall system;11—purple-red small conglomerate and gravel-bearing coarse sandstone of Changzhougou formation of Great Wall system;12—purple-red small conglomerate and gravel-bearing coarse sandstone of Changzhougou formation of Great Wall system;13—granite porphyry;14—quartz porphyry;15—normal fault, reverse fault and number;16—translational faults, faults of unknown nature and number;17—2012~2016 drilling;18—protoporphyry lead-zinc-silver deposit
|
岩石名称 | 电性 | 磁性 | 密度/ (103 kg·m-3) | 标本 采集 地点 | 极化率/ % | 电阻率/ (Ω·m) | 标本 数量 | 有磁标 本数量 | κ/(10-6×4πSI) | Jr/ (10-3 A·m-1) | 花岗斑岩 | 1.51 | 1229 | 75 | 12 | 9030 | 404 | 2.52 | 地表 | | 1.52 | 2332 | 13 | 1 | 58806 | 1518 | 2.56 | 钻孔 | 矿化花岗斑岩 | 16.35 | 69 | 0 | 0 | | | | | 石英正长斑岩 | 1.28 | 1298 | 57 | 0 | | | 2.51 | 地表 | | 1.34 | 881 | 7 | 0 | | | 2.57 | 钻孔 | 矿化石英正长斑岩 | 13.05 | 168 | 0 | 0 | | | | | 石英斑岩 | 1.62 | 418 | 29 | 0 | | | 2.44 | 地表 | | 1.76 | 2424 | 0 | 0 | | | | 钻孔 | 矿化石英斑岩 | 2.16 | 1293 | 0 | 0 | | | | | 次流纹岩 | 1.13 | 2198 | 0 | 0 | | | 2.6 | 地表 | 流纹质凝灰熔岩 | 1.32 | 3900 | 12 | 0 | | | | 钻孔 | 矿化次流纹岩 | 16.68 | 202 | 0 | 0 | | | | | 石英砂岩 | 1.01 | 3578 | 35 | 0 | | | 2.62 | 地表 | | 1.22 | 1538 | 16 | 0 | | | 2.8 | 钻孔 | 矿化石英砂岩 | 5.44 | 1078 | 0 | 0 | | | | | 粉砂岩 | 0.86 | 3337 | 0 | 0 | | | | 地表 | 含碳质泥页岩 | 2.12 | 920 | 0 | 0 | | | | 钻孔 | 白云岩 | 0.78 | 3116 | 13 | 0 | | | 2.67 | 地表 | 角砾岩 | 1.29 | 417 | 17 | 4 | 4530 | 855 | 2.58 | 地表 | | 0.97 | 284 | 0 | 0 | | | | 钻孔 | 矿化角砾岩 | 15.61 | 41 | 0 | 0 | | | | | 大理岩 | 0.6 | 3801 | 15 | 0 | | | 2.77 | 地表 | | 1.3 | 29874 | 0 | 0 | | | | 钻孔 | 蚀变岩 | 5.49 | 159 | 0 | 0 | | | | | 铅锌矿石(脉状) | 5.71 | 234 | 0 | 0 | | | 2.83 | | 铜矿石(脉状) | 5.49 | 258 | 0 | 0 | | | 2.71 | | 钼矿石(细脉浸染脉状) | 1.23 | 367 | 0 | 0 | | | 2.6 | | 浸染状铅锌矿石 | 2.03 | 512 | 0 | 0 | | | 2.63 | |
|
Statistics of petrophysical parameters of a porphyry lead-zinc deposit in Hebei
|
Fig.1 ">
|
An analysis of induced polarization and geomagnetic anomalies in a porphyry lead-zinc deposit in Hebei(modified from reference [15]) 1—protoporphyry lead-zinc-silver deposit;2—extreme point location and value;other legends are the same as Fig.1
|
|
A 1∶200 000 water system sedimentanomaly in a porphyry lead-zinc deposit in Hebei
|
Fig.1 ">
|
A 1∶50 000 water system sediment anomaly in a porphyry lead-zinc deposit in Hebei 1—gold anomaly;2—silver anomaly;3—lead anomaly;4—zinc anomaly;5—tungsten anomaly;6—tin anomaly;7—bismuth anomaly;8—molybdenum anomaly;9—arsenic anomaly;10—antimony anomaly;11—mercury anomaly;12—1∶50 000 water system anomalies and numbers;other legends are the same as Fig.1
|
Fig.1 ">
|
1∶10 000 rock anomaly in a porphyry lead-zinc deposit in Hebei 1—plane range of original porphyry lead-zinc deposit;2—gold anomaly;3—silver anomaly;4—lead anomaly;5—zinc anomaly;6—tungsten anomaly;7—copper anomaly; 8—molybdenum anomaly;9—arsenic anomaly;10—antimony anomaly;11—mercury anomaly; 12—1∶50 000 water system anomalies and numbers;13—section location and number;other legends are the same as Fig.1
|
|
Borehole halo curve diagram
|
孔深/m | Au | Ag | Sn | Cu | Zn | Mo | Cd | Sb | W | Pb | Bi | As | Hg | 0~200 | 0.03 | 0.06 | 0.03 | 0.00 | 0.01 | 0.00 | 0.00 | 0.19 | 0.07 | 0.21 | 0.00 | 0.30 | 0.07 | 200~400 | 0.04 | 0.05 | 0.05 | 0.00 | 0.07 | 0.00 | 0.03 | 0.03 | 0.00 | 0.35 | 0.00 | 0.00 | 0.10 | 400~600 | 0.01 | 0.05 | 0.07 | 0.01 | 0.06 | 0.00 | 0.04 | 0.01 | 0.11 | 0.08 | 0.00 | 0.08 | 0.17 | 600~800 | 0.05 | 0.11 | 0.06 | 0.02 | 0.02 | 0.00 | 0.02 | 0.01 | 0.08 | 0.19 | 0.01 | 0.13 | 0.10 | 800~1000 | 0.03 | 0.11 | 0.22 | 0.29 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 0.10 | 0.02 | 1000~1200 | 0.06 | 0.05 | 0.04 | 0.20 | 0.00 | 0.02 | 0.00 | 0.04 | 0.08 | 0.03 | 0.21 | 0.23 | 0.01 | 1200~1400 | 0.16 | 0.03 | 0.02 | 0.07 | 0.00 | 0.10 | 0.00 | 0.01 | 0.27 | 0.01 | 0.12 | 0.18 | 0.00 | 1400~1600 | 0.12 | 0.00 | 0.00 | 0.07 | 0.00 | 0.39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.08 | 0.14 |
|
Zonal index values of elements
|
元素 | Au | Ag | Sb | As | Hg | Cd | Bi | Sn | W | Pb | Cu | Zn | Mo | Au | 1 | | | | | | | | | | | | | Ag | 0.25 | 1 | | | | | | | | | | | | Sb | 0.29 | 0.41 | 1 | | | | | | | | | | | As | 0.29 | 0.21 | 0.20 | 1 | | | | | | | | | | Hg | 0.04 | 0.40 | 0.21 | 0.08 | 1.00 | | | | | | | | | Cd | 0.04 | 0.44 | 0.25 | 0.05 | 0.74 | 1 | | | | | | | | Bi | 0.33 | 0.24 | 0.67 | 0.02 | 0.05 | 0.11 | 1 | | | | | | | Sn | 0.17 | 0.63 | 0.27 | 0.24 | 0.42 | 0.42 | 0.14 | 1 | | | | | | W | 0.03 | 0.15 | -0.04 | 0.09 | 0.02 | 0.04 | 0.00 | 0.24 | 1 | | | | | Pb | 0.08 | 0.57 | 0.40 | 0.13 | 0.41 | 0.49 | 0.17 | 0.40 | 0.00 | 1 | | | | Cu | 0.26 | 0.55 | 0.44 | 0.08 | 0.03 | 0.10 | 0.66 | 0.35 | 0.19 | 0.10 | 1 | | | Zn | 0.02 | 0.41 | 0.24 | 0.04 | 0.72 | 0.99 | 0.06 | 0.39 | 0.02 | 0.49 | 0.06 | 1 | | Mo | 0.13 | -0.08 | -0.09 | 0.01 | -0.13 | -0.05 | 0.04 | -0.10 | 0.10 | -0.11 | 0.06 | -0.07 | 1 |
|
Matrix table of element correlation coefficients
|
[1] |
翟裕生. 按成矿系列思路找寻铜—金矿床[J]. 有色金属矿产与勘查, 1994,3(3):158.
|
[1] |
Zhai Y S. Copper and gold deposits are searched according to the thought of metallogenic series[J]. Geological Exploration for Non-ferrous Metals, 1994,3(3):158.
|
[2] |
金利勇, 钟长林. 中国斑岩矿床成矿系列的几点认识[J]. 吉林地质, 2001,20(3):23-29.
|
[2] |
Jin L Y, Zhong C L. The views on the metallogenetic series of China porphyry deposits[J]. Jilin Geology, 2001,20(3):23-29.
|
[3] |
陈毓川, 裴荣富, 王登红. 三论矿床的成矿系列问题[J]. 地质学报, 2006,80(10):1501-1508.
|
[3] |
Chen Y C, Pei R F, Wang D H. On minerogenetic series:Third discussion[J]. Acta Geologica Sinica, 2006,80(10):1501-1508.
|
[4] |
陈毓川, 裴荣富, 王登红, 等. 矿床成矿系列——五论矿床的成矿系列问题[J]. 地球学报, 2016,37(5):519-527.
|
[4] |
Chen Y C, Pei R F, Wang D H, et al. Minerogenetic series for mineral deposits:Discussion on minerogenetic series (V)[J]. Acta Geoscientica Sinica, 2016,37(5):519-527.
|
[5] |
裴荣富, 李进文, 梅燕雄. 大陆边缘成矿[J]. 大地构造与成矿学, 2005,29(1):24-34.
|
[5] |
Pei R F, Li J W, Mei Y X. Metallogeny of continental margin[J]. Geotectonica et Metallogenia, 2005,29(1):24-34.
|
[6] |
郑翻身, 蔡红军, 张振法. 内蒙古拜仁达坝维拉斯托超大型银铅锌矿的发现及找矿意义[J]. 物探与化探, 2006,30(1):13-25.
|
[6] |
Zheng F S, Cai H J, Zhang Z F. The discovery of superlarge silver-lead-zinc deposits in Bairendaba and Weilasitulo,Inner Mongolia,and its ore-prospecting significance[J]. Geophysical and Geochemical Exploration, 2006,30(1):13-25.
|
[7] |
曹晓明, 周贤旭, 钟浩. “就矿找矿”的认识与实践[J]. 东华理工大学学报:自然科学版, 2011,34(1):51-56.
|
[7] |
Cao X M, Zhou X X, Zhong H. The cognition and the practice of ore-prospecting nearby the existing deposits[J]. Journal of East China Institute of Tecnology, 2011,34(1):51-56.
|
[8] |
朱训. 关于就矿找矿论的几个问题[J]. 中国工程科学, 2015,17(2):35-39.
|
[8] |
Zhu X. The problems about the theory of“known for unknown”[J]. Chinese Engineering Sciences, 2015,17(2):35-39.
|
[9] |
姚磊, 吕志成, 陈辉, 等. 再谈矿山深部及外围找矿新发现及意义[J]. 南京大学学报:自然科学, 2018,54(2):296-307.
|
[9] |
Yao L, Lyu Z C, Chen H, et al. A reappraisal on the new discovery of deep ore exploration ofmines and adjacent areas and its significances[J]. Journal of Nanjing University:Natural Science, 2018,54(2):296-307.
|
[10] |
李强. 危机矿山接替资源勘查的理论与方法研究进展与发展趋势[J]. 西部探矿工, 2011,(11):96-98.
|
[10] |
Li Q. Research progress and development trend on the exploration of replaceable resources of crisis mine[J]. West-China Exploration Engineering, 2011,(11):96-98.
|
[11] |
王金亮, 李俊平, 李永峰, 等. 危机矿山深部找矿研究现状与建议[J]. 矿产保护与利用, 2010,(4):45-49.
|
[11] |
Wang J L, Li J P, Li Y F, et al. The current research situation and suggestions of deep exploration for crisis mines[J]. Conservation and Utilization of Mineral Resources, 2010,(4):45-49.
|
[12] |
张原庆, 宋炳忠, 王玉福, 等. 矿山外围找矿方法探讨[J]. 地质找矿论丛, 2009,24(2):106-110.
|
[12] |
Zhang Y Q, Song B Z, Wang Y F, et al. Discussion on ore-searching methods in surroundings of the knownmines[J]. Contributions to Geology and Mineral Resources, 2009,24(2):106-110.
|
[13] |
河北省地矿局第八地质大队. 河北省承德县轿顶山铅锌矿普查地质报告[R]. 1988.
|
[13] |
The Eighth Geology Brigade of Bureau of Geology and Mining of Hebei Province. Geological survey report of lead-zinc deposit in Jiaodingshan,Chengde county of Hebei province[R]. 1988.
|
[14] |
地质部航空物探大队904大队. 河北承德地区航空物探成果报告[R]. 1980.
|
[14] |
904 Brigade,Aviation Geophysical Prospecting Brigade,Ministry of Geology. Achievements report of aerial geophysical exploration in Chengde,Hebei[R]. 1980.
|
[15] |
河北省地球物理勘查院. 河北省平泉县下营房-小寺沟一带 1∶5 万战略性矿产远景调查报告[R]. 2008.
|
[15] |
Hebei Institute of Geophysical Exploration. Surver report of 1∶50 000 strategic mineral prospects in Xiayigfang-Xiaosigou area,Pingquan County,Hebei Province[R]. 2008.
|
[16] |
朴寿成, 连长云, 王丽华. 确定地球化学异常水平分带序列方法的研究[J]. 物探与化探, 1997,21(3):168-171.
|
[16] |
Piao S C, Lian C Y, Wang L H. A study of the method for determining geological horizontal zonality sequence[J]. Geophysical and Geochemical Exploration, 1997,21(3):168-171.
|
[17] |
刘恒福, 徐云甫, 李善平. 三十九种元素的分组及元素地球化学[M]. 北京: 地质出版社, 2017.
|
[17] |
Liu H F, Xu Y F, Li S P. Grouping of thirty-nine elements and element geochemistry [M]. Beijing: Geological Press, 2017.
|
[18] |
蒋敬业. 应用地球化学[M]. 武汉: 中国地质大学出版社, 2006.
|
[18] |
Jiang J Y. Applied geochemistry[M]. Wuhan: China University of Geosciences Press, 2006.
|
[19] |
叶天竺, 张智勇. 成矿地质背景研究技术要求[M]. 北京: 地质出版社, 2010.
|
[19] |
Ye T Z, Zhang Z Y. Geological background research and technical requirements [M]. Beijing: Geological Press, 2010.
|
[1] |
QIAO Zhen, JIANG Zhi-quan, Zhang Guo-rui, ZHANG Xian-liang. Geophysical-geochemical anomaly characteristics and prospecting effect in the Wunuer lead and zinc silver deposit of Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2017, 41(4): 634-640. |
[2] |
LIN Yu-Xiang, MA Xiao-Wei, ZHU Chuan-Zhen, SONG Xi-Lin, MI Xiao-Li, ZHANG Gang. Establishment of three-dimensional interpretation model for surface geochemical anomaly:A case study of Meath Braque area in Kuqa Depression[J]. Geophysical and Geochemical Exploration, 2016, 40(4): 705-712. |
|
|
|
|