|
|
The determination of trace thallium in soil by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) using ascorbic acid as a sensitizer |
Sheng-Bing JIAO1, Meng-Ying HU2,3, Xue-Miao DU2,3, Jin-Li XU2,3( ) |
1. Regional Geology Survey Institute of Hebei Province, Langf ang 065000, China 2. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China 3. UNESCO International Centre on Global-Scale Geochemistry, Langfang 065000, China |
|
|
Abstract A method for the pretreatment and determination of trace thallium in soil by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) with mixed acids sample digestion system was established. In this study, the authors investigated the optimum instrumental conditions for the determination and optimized the concentration and volume of the matrix modifier, adsorption-desorption system, adsorption acidity and the oscillation time. The detection limit was 0.015×10 -6, and the relative standard deviation was from 5.49% to 13.42%. The method was verified by National Standard Reference Material and the results were accurate and reliable.
|
Received: 23 November 2018
Published: 31 May 2019
|
|
Corresponding Authors:
Jin-Li XU
E-mail: 80368070@qq.com
|
|
|
|
|
Effect of lamp current on absorbance and negative high pressure
|
|
Effect of passband width on absorbance and negative high pressure
|
|
Results of ashing temperature and atomization temperature of Tl
|
|
Effect of sample decomposition method on Tl measurement results
|
|
Effect of adsorption system on sample recovery
|
样品号 | 空白样 | 标准 偏差 | 检出限 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 测定值/10-6 | 0.005 | 0.004 | 0.014 | 0.005 | 0.011 | 0.018 | 0.005 | 0.004 | 0.005 | 0.004 | 0.008 | 0.005 | 0.005 | 0.015 |
|
Detection limit of the method
|
样品号 | 标准物质(GBW) | 07103 | 07104 | 07402 | 07446 | 07454 | 07309 | 07310 | 07336 | 1 | 1.75 | 0.17 | 0.51 | 0.56 | 0.50 | 0.46 | 0.19 | 1.16 | 2 | 1.62 | 0.18 | 0.56 | 0.49 | 0.56 | 0.47 | 0.19 | 0.98 | 3 | 1.82 | 0.17 | 0.54 | 0.60 | 0.53 | 0.45 | 0.22 | 0.95 | 4 | 1.54 | 0.16 | 0.54 | 0.50 | 0.63 | 0.41 | 0.18 | 1.06 | 5 | 1.81 | 0.19 | 0.62 | 0.57 | 0.50 | 0.51 | 0.22 | 0.96 | 6 | 1.56 | 0.13 | 0.55 | 0.47 | 0.53 | 0.53 | 0.21 | 1.10 | 7 | 1.71 | 0.22 | 0.58 | 0.55 | 0.61 | 0.47 | 0.19 | 1.13 | 8 | 1.83 | 0.16 | 0.54 | 0.53 | 0.65 | 0.41 | 0.20 | 1.07 | 9 | 1.69 | 0.19 | 0.56 | 0.54 | 0.54 | 0.55 | 0.23 | 0.98 | 10 | 1.95 | 0.14 | 0.60 | 0.49 | 0.59 | 0.52 | 0.19 | 1.00 | 11 | 1.81 | 0.18 | 0.55 | 0.60 | 0.63 | 0.42 | 0.21 | 1.08 | 12 | 1.76 | 0.18 | 0.53 | 0.55 | 0.66 | 0.55 | 0.18 | 1.07 | 平均值 | 1.74 | 0.17 | 0.56 | 0.54 | 0.58 | 0.48 | 0.20 | 1.04 | 标准偏差 | 0.12 | 0.02 | 0.03 | 0.04 | 0.06 | 0.05 | 0.02 | 0.07 | RSD/% | 6.90 | 13.42 | 5.49 | 7.98 | 9.75 | 10.98 | 8.35 | 6.76 | 标准值 | 1.93 | 0.16 | 0.62 | 0.51 | 0.59 | 0.49 | 0.20 | 1.05 | ΔlgC | -0.05 | 0.03 | -0.05 | 0.02 | -0.01 | -0.01 | 0.00 | 0.00 |
|
The precision and accuracy of Tl content of standard substance sample solutions
|
[1] |
卢荫庥, 王春风 . 塞曼效应无火焰原子吸收光谱法连续测定地球化学样品中微量铊和铟[J]. 物探与化探, 1993,16(4):304-312.
|
[1] |
Lu Y X, Wang C F . Continuous determination of trace Tl and In geochemical samples by Flameless Atomic Absorption Spectral Method of Zeeman Effect[J]. Geophysical & Geochemical Exploration, 1993,16(4):304-312.
|
[2] |
孙晓玲, 胡瑞莲, 张勤 , 等. 泡沫塑料吸附—石墨炉原子吸收法测定地质物料中痕量Tl[J]. 光谱实验室, 1997,2(14):71-75.
|
[2] |
Sun X L, Hu R L, Zhang Q , et al. Determination of trace Thallium in geological materials by GFAAS after preconcentration by polyurethane foam[J]. Chinese Journal of Spectroscopy Laboratory, 1997,2(14):71-75.
|
[3] |
林光西, 周泳德, 周康明 . 泡沫塑料富集—石墨炉原子吸收光谱法测定地质样品中微量铊[J]. 岩矿测试, 2006,25(4):377-380.
|
[3] |
Lin G X, Zhou Y D , ZhouU K M. Determination of trace Thallium in geological samples by plastic foam preconcentration Graphite Furnace Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2006,25(4):377-380.
|
[4] |
刘峰, 秦樊鑫, 胡继伟 , 等. 活性炭吸附—石墨炉原子吸收光谱法测定土壤样品中铊[J]. 理化检验:化学分册, 2011,47(3):333-335.
|
[4] |
Liu F, Qin F X, Hu J W , et al. GFAAS determination of trace amount of Thallium in soil after adsorption with activated carbon[J]. PTCA(PART B: CHEM. ANAL, 2011,47(3):333-335.
|
[5] |
姚坚, 金琴芳 . 火焰原子吸收光谱法连续测定废水中的银和铊[J]. 污染与防治技术, 2012,25(1):50-54.
|
[5] |
Yao J, Jin Q F . Determination of silver and Thallium in wastewater by Flame Atomic Absorption Spectrometry[J]. Pollotion control technology, 2012,25(1):50-54.
|
[6] |
王龙山, 高登峰, 牟乃仓 , 等. 聚氨酯泡塑富集—石墨炉原子吸收分光光度法测定土壤样品中的痕量铊[J]. 陕西地质, 2008,26(2):103-108.
|
[6] |
Wang L S, Gao D F, Mu N C , et al. Determination of trace Thallium in soil samples by GFAAS with polyurethane foam[J]. Geology of Shanxi, 2008,26(2):103-108.
|
[7] |
董迈青, 谢海东, 彭秀峰 , 等. 泡塑富集—石墨炉原子吸收光谱法测定地质样品中微量铊[J]. 光谱实验室, 2010,27(4):1560-1564.
|
[7] |
Dong M Q, Xie H D, Peng X F , et al. Determination of trace Thallium in geological samples by GFAAS with plastic foam preconcentration[J]. Chinese Journal of Spectroscopy Laboratory, 2010,27(4):1560-1564.
|
[8] |
李奋, 吴文启, 谢晓雁 , 等. 离子交换分离—石墨炉原子吸收光谱法测定饮用水中痕量铊[J]. 理化检验:化学分册, 2015,51(12):1675-1679.
|
[8] |
Li F, Wu W Q, Xie X Y , et al. Determination of trace amount of Thallium in potable water by GFAAS with Ion-Exchange Separation[J]. PTCA(PART B: CHEM. ANAL, 2015,51(12):1675-1679.
|
[9] |
鲁青庆 . 石墨炉原子吸收法测定有色冶炼环境水样中痕量铊[J]. 湖南有色金属, 2018,34(1):75-80.
|
[9] |
Lu Q Q . Graphite Furnace Atomic Absorption Spectrometry for determination of Thallium in Lead and Zinc melted industry waste water[J]. Hunan Nonferrous Metals, 2018,34(1):75-80.
|
[10] |
周乐舟, 付胜, 余克平 , 等. 氧化石墨烯/硫杂杯芳烃复合材料富集分离—石墨炉原子吸收法测定痕量铊[J]. 分析测试学报, 2013,32(10):1242-1246.
|
[10] |
Zhou L Z, Fu S, Yu K P , et al. Determination of trace Thallium by Graphite Furnace Atomic Absorption Spectrometry after preconcentration with Graphene Oxide/Thiacalixarene composites material[J]. Journal of Instrumental Analysis, 2013,32(10):1242-1246.
|
[11] |
张利群, 王晓辉, 宋晓春 , 等. 电感耦合等离子体原子发射光谱法测定锑精矿中铅硒碲铊[J]. 冶金分析, 2012,32(4):50-53.
|
[11] |
Zhang L Q, Wang X H, Song X C , et al. Determination of plumbum, selenium, tellurium, thallium in antimony concentrates bt inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2012,32(4):50-53.
|
[12] |
胡芳, 黄慧敏, 禹颖 , 等. 电感耦合等离子体质谱法测定土壤中痕量铊的方法研究[J]. 广州化学, 2016,41(6):42-45.
|
[12] |
Hu F, Huang H M, Yu Y , et al. Research of trace Thallium in soil by ICP-MS[J]. Guangzhou Chemistry, 2016,41(6):42-45.
|
[13] |
张勤, 刘亚轩, 吴健玲 . 电感耦合等离子体质谱法直接同时测定地球化学样品中镓铟铊[J]. 岩矿测试, 2003,22(1):21-27.
|
[13] |
Zhang Q, Liu Y X, Wu J L . Simultaneous determination of Gallium, Indium and Thallium in geochemical samples by Inductively Coupled Plasma Mass Spectrometry[J]. Rock and Mineral Analysis, 2003,22(1):21-27.
|
[14] |
徐进力, 邢夏, 郝志红 , 等. 聚氨酯泡塑吸附—电感耦合等离子体质谱法测定地球化学样品中铊[J]. 岩矿测试, 2012,31(3):430-433.
|
[14] |
Xu J L, XIin X, Hao Z H , et al. Determination of Thallium in geochemical samples by Inductively Coupled Plasma-Mass Spectrometry with Polyurethane Foam Adsorption[J]. Rock and Mineral Analysis, 2012,31(3):430-433.
|
[15] |
孙朝阳, 董利明, 贺颖婷 , 等. 电感耦合等离子体质谱法测定地质样品中钪镓锗铟镉铊时的干扰及其消除方法[J]. 理化检验:化学分册, 2016,52(9):1026-1030.
|
[15] |
Sun C Y, Dong L M, He Y T , et al. Elimination of interference in ICP-MS determination of Sc,Ga,Ge,In,Cd and Tl in geological samples[J]. PTCA(PartB:CHEM.ANAL), 2016,52(9):1026-1030.
|
[16] |
Dadfarnia S, Assadollahi T , Haji Shabani A M . Speciation and determination of thallium by on-linemicrocolumn separation/preconcentration by flow injection-flame atomic absorption spectrometry using immobilized oxine as sorbent[J]. Journal of Hazardous Materials, 2007,148:446-452.
|
[17] |
Dadfarnia S, Assadollahi T , Haji Shabani A M. On-line preconcentration of ultra-trace thallium(I)in water samples with titanium dioxide nanoparticles and determination by graphite furnace atomic absorption spectrometry[J]. Arabian Journal of Chemistry, 2012: 1-7.
|
[18] |
邢夏, 徐进力, 陈海杰 , 等. 抗坏血酸为基体改进剂石墨炉原子吸收光谱法测定金矿区植物样品中的痕量金[J]. 岩矿测试, 2015,34(3):319-324.
|
[18] |
XIing X, Xu J L, Chen H J , et al. Determination of trace gold in plant samples from a gold mining area by Graphite Furnace Atomic Absorption Spectrometry with ascorbic acid as the matrix modifier[J]. Rock and Mineral Analysis, 2015,34(3):319-324.
|
[1] |
WANG Bin, LUO Yan-Jun, MENG Guang-Lu, ZHANG Jing, ZHANG Hai-Di, CHEN Bo, HE Zi-Xin. Potential assessment of gold, copper, lead, zinc, tungsten, and tin deposits in Kyrgyzstan based on 1∶1 000 000 scale geochemical data[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 58-69. |
[2] |
ZHAO Ze-Lin, LI Jun-Jian, ZHANG Tong, NI Zhen-Ping, PENG Yi, SONG Li-Jun. Geological characteristics and prospecting direction of rare earth element deposits in North China[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 46-57. |
|
|
|
|