|
|
Comparison of initial amplitude estimation methods for cross-hole electromagnetic wave attenuation tomography |
Jian-Fu NI, Si-Xin LIU( ) |
College of Geo-Exploration Sciences and Technology,Jilin University,Changchun 130026,China |
|
|
Abstract Cross-hole electromagnetic attenuation tomography is a method that uses the amplitude information of electromagnetic waves to invert the distribution of the attenuation constant of the medium by the amplitude change of the electromagnetic wave from the transmitting to the receiving. Transmitter amplitude is also called the initial amplitude, which is generally unknown. Its accuracy largely affects the tomographic results and it needs to be obtained before inversion or by special inversion methods. This paper summarizes four initial amplitude processing methods, i.e., linear fitting method, matrix inversion method, dual-frequency electromagnetic wave method and neighboring traces method. The feasibility of these four methods is verified by synthetic data, and the advantages and disadvantages of each method are pointed out: Linear fitting method is suitable for the case where the physical property changes little; matrix inversion has low requirements for physical condition, but the amount of calculation is relatively large.; dual-frequency electromagnetic wave method can directly obtain the conductivity distribution, but only for the good conductor case; the applicable situation of neighboring traces method is the most extensive, but it is susceptible to interference.
|
Received: 23 October 2018
Published: 31 May 2019
|
|
Corresponding Authors:
Si-Xin LIU
E-mail: liusixin@jlu.edu.cn
|
|
|
|
|
Model diagram
|
|
Observation system
|
|
Comparison of attenuation constant model and tomography of three methods a—attenuation constant model diagram;b—attenuation tomogram of linear fitting method;c—attenuation tomogram of matrix inversion method;d—attenuation tomogram of neighboring traces method
|
|
Linear fit graph
|
|
Attenuation tomography with known initial amplitude
|
|
Comparison of dual-frequency electromagnetic wave method conductivity model and two sets of frequency conductivity tomography results a—conductivity model diagram in the case of good conductor;b—conductivity tomography of dual-frequency electromagnetic wave method (1 MHz & 1.2 MHz);c—conductivity tomography of dual-frequency electromagnetic wave method (10 MHz & 12 MHz)
|
[1] |
王均双, 薄夫利, 马冲 . 坑透 CT 成像技术在工作面地质构造探测中的应用[J]. 煤炭科学技术, 2008,36(10):93-96.
|
[1] |
Wang J S, Bo F L, Ma C . Application of mine penetration CT imaging technology to probe geological tectonics of fully mechanized top coal caving mining face[J]. Coal Science and Technology, 2008,36(10):93-96.
|
[2] |
Fullagar P K, Livelybrooks D W, Zhang P , et al. Radio tomography and borehole radar delineation of the McConnell nickel sulfide deposit, Sudbury, Ontario, CanadaRadio and Radar Delineation[J]. Geophysics, 2000,65(6):1920-1930.
|
[3] |
肖玉林 . 煤矿综采工作面无线电波透视技术研究[D]. 合肥:安徽理工大学, 2010.
|
[3] |
XiaoY L . Study on Radio Wave Penetration Technology for Mechanized Coal Face[D]. Hefei:Anhui University Of Science & Technology, 2010.
|
[4] |
Zhou B, Fullagar P K . Delineation of sulphide ore-zones by borehole radar tomography at Hellyer Mine, Australia[J]. Journal of Applied Geophysics, 2001,47(3-4):261-269.
|
[5] |
Peterson, Jr J E . Pre-inversion corrections and analysis of radar tomographic data[J]. Journal of Environmental & Engineering Geophysics, 2001,6(1):1-18.
|
[6] |
于师建, 颜世杰 . “三软煤层” 电磁波吸收特征分析[J]. 煤田地质与勘探, 1999,27(6):60-62.
|
[6] |
Yu S J, Yan S J . Analysis on the absorpting characteristics of electromagnetic wave in coal seam with soft coal,roof and floor[J]. Coal Geology & Exporation, 1999,27(6):60-62.
|
[7] |
郭方, 李培根, 齐顺 , 等. 基于测线分类的无线坑透初始场强求取探讨[J]. 煤炭科学技术, 2013,41(12):97-99,104.
|
[7] |
Guo F, Li P G, Qi S , et al. Discussion of solving initial field intensity of radio tunnel perspective based on classified probe lines[J]. Coal Science and Technology, 2013,41(12):97-99,104.
|
[8] |
曹俊兴, 朱介寿 . 双频电磁波电导率层析成象[J]. 物探化探计算技术, 1997,19(4):329-332.
|
[8] |
Cao J X, Zhu J S . Transmission EM condictivity tomography[J]. Computing Techniqes for Geophysical and Geochemical Exploration, 1997,19(4):329-332.
|
[9] |
Holliger K, Musil M, Maurer H R . Ray-based amplitude tomography for crosshole georadar data: A numerical assessment[J]. Journal of Applied Geophysics, 2001,47(3-4):285-298.
|
[10] |
张辉, 潘冬明, 刘朋 , 等. 模拟分析初始场强对坑透反演结果的影响[J]. 地球物理学进展, 2016,31(6):2788-2795.
|
[10] |
Zhang H, Pan D M, Liu P , et al. Simulation and analysis of the influence of initial field intensity on the inversion results[J]. Progress in Geophysics, 2016,31(6):2788-2795.
|
[11] |
肖玉林, 吴荣新, 严家平 , 等. 工作面坑透场强传播规律及有效透视宽度研究[J]. 煤炭学报, 2017,42(3):712-718.
|
[11] |
Xiao Y L, Wu R X, Yan J P , et al. Field strength propagation law of radio wave penetration and effective perspective width for coal face[J]. Journal of China Coal Society, 2017,42(3):712-718.
|
[12] |
宁书年, 张绍红, 杨峰 , 等. 无线电波层析成像技术及在矿井坑透中的应用[J]. 煤炭学报, 2001,26(5):468-472.
|
[12] |
Ning S N, Zhang S H, Yang F , et al. Radio wave tomography rechnique and its application in underground radio wave probing[J]. Journal of China Coal Society, 2001,26(5):468-472.
|
[13] |
刘鑫明, 刘树才, 姜志海 , 等. 有耗媒质中任意入射角电磁波传播衰减特性研究[J]. 煤炭科学技术, 2012,40(6):96-99.
|
[13] |
Liu X M, Liu S C, Jiang Z H , et al. Study on propagation attenuation features of random incidence angle electromagetic wave in lossy medium[J]. Coal Science and Technology, 2012,40(6):96-99.
|
[14] |
Olsson O, Falk L, Forslund O , et al. Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock 1[J]. Geophysical prospecting, 1992,40(2):109-142.
|
[15] |
Holliger K, Bergmann T . Numerical modeling of borehole georadar data[J]. Geophysics, 2002,67(4):1249-1257.
|
[16] |
王飞 . 跨孔雷达走时层析成像反演方法的研究[D]. 吉林大学, 2014.
|
[16] |
Wang F . Reseach on crosshole radar traveltime tomography[D]. Jinlin University, 2014.
|
[17] |
Paige C C, Saunders M A . LSQR: An algorithm for sparse linear equations and sparse least squares[J]. ACM Transactions on Mathematical Software (TOMS), 1982,8(1):43-71.
|
[18] |
杨薇, 刘四新, 冯彦谦 . 跨孔层析成像 LSQR 算法研究[J]. 物探与化探, 2008,32(2):199-202.
|
[18] |
Yang W, Liu S X, Feng Y Q . A study of the LSQR algorithm for cross-hole tomography[J]. Feophysical & Geochemical Exploration, 2008,32(2):199-202.
|
[19] |
Maurer H, Musil M . Effects and removal of systematic errors in crosshole georadar attenuation tomography[J]. Journal of Applied Geophysics, 2004,55(3-4):261-270.
|
[20] |
王文娟, 潘克家, 曹俊兴, 等 . 基于 Tikhonov 正则化的双频电磁波电导率成像反演[J]. 地球物理学报, 2009,52(3):750-757.
|
[20] |
Wang W J, Pan K J, Cao J X , et al. Electrical conductivity imaging using dual-frequency EM data based on Tikhonov regularization[J]. Chinese Journal of Geophysics, 2009,52(3):750-757.
|
[21] |
Gloaguen E, Marcotte D, Giroux B , et al. Stochastic borehole radar velocity and attenuation tomographies using cokriging and cosimulation[J]. Journal of Applied Geophysics, 2007,62(2):141-157.
|
[22] |
王辉, 常旭, 刘伊克 , 等. 时间域相邻道地震波衰减成像研究[J]. 地球物理学报, 2001,44(3):396-403.
|
[22] |
Wang H, Chang X, Liu Y K , et al. Seismic neighboring traces attenuation tomography in time domain[J]. Chinese Journal of Geophysics, 2001,44(3):396-403.
|
[23] |
Cao J, He Z, Zhu J , et al. Conductivity tomography at two frequencies[J]. Geophysics, 2003,68(2):516-522.
|
[24] |
曾昭发, 刘四新, 冯晅 . 探地雷达原理与应用[M]. 北京: 电子工业出版社, 2010.
|
[24] |
Zao S F, Liu S X, Feng X. Ground penetrating radar principle and application[M]. Beijing: Publishing House of Electronics Industry, 2010.
|
[1] |
YANG Li-Pu, XU Zhi-Ping, XU Shun-Qiang, LIU Ming-Jun, JIANG Lei, XIONG Wei, HE Wei-Min. Characteristics of the electrical structure in the southern segment of Baobi fault[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1301-1305. |
[2] |
GAO Wu-Pin, YAN Cheng-Guo, ZHANG Wen-Peng, WANG Zhi-Sheng. The application of high density electrical method to concealed fault detection in sedimentary plain[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1352-1360. |
|
|
|
|