Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 343-352    DOI: 10.11720/wtyht.2023.1095
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
河南灵宝董家埝银矿床流体包裹体特征及矿床成因
刘畅1(), 张参辉2, 张鑫1, 纵瑞2
1.河南理工大学 资源环境学院,河南 焦作 454000
2.河南省地质矿产勘查开发局 第二地质矿产调查院,河南 郑州 450000
Fluid inclusions and formation mechanisms of the Dongjianian silver deposit in Lingbao City, Henan Province, China
LIU Chang1(), ZHANG Can-Hui2, ZHANG Xin1, ZONG Rui2
1. Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China
2. No. 2 Institute of Geological and Mineral Survey, Henan Bureau of Geo-exploration & Mineral Development, Zhengzhou 450000, China
全文: PDF(7090 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

董家埝银矿位于小秦岭南缘,受小河断裂的次级构造控制,是小秦岭南带首次发现的大型贵金属矿床。矿床的热液成矿期分为3个阶段:石英—黄铁矿阶段(Ⅰ)、石英—多金属硫化物阶段(Ⅱ)和石英—碳酸岩化阶段(Ⅲ),其中石英—多金属硫化物阶段为主要成矿阶段。矿体主要发育气液两相包裹体(W型)、含CO2包裹体(C型)及纯CO2包裹体(PC型)3种类型,石英—黄铁矿阶段主要发育C型、W型和少量PC型包裹体,石英—多金属硫化物阶段主要发育W型和少量C型包裹体。第Ⅰ及第Ⅱ成矿阶段的石英流体包裹体的均一温度范围分别为151~270 ℃和126~240 ℃,且呈降低趋势;盐度范围分别为3.8%~22.42% NaCleqv和4.16%~20.48% NaCleqv,整体变化不大,属于低盐度环境;CO2由富转贫。估算成矿压力为22.08~76.6 MPa,成矿深度3.77~7.13 km,矿床类型为低盐度中低温中深成热液型银矿床。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘畅
张参辉
张鑫
纵瑞
关键词 董家埝银矿床流体包裹体特征热液矿床小秦岭河南    
Abstract

The Dongjianian silver deposit, located on the southern margin of the Xiaoqinling Mountains, is controlled by the secondary structures of the Xiaohe fault and is the first large precious metal deposit discovered in the southern belt of the Xiaoqinling Mountains. This deposit has three hydrothermal metallogenic stages, namely the quartz-pyrite metallogenic stage (Ⅰ), the dominant quartz-polymetallic sulfide metallogenic stage (Ⅱ), and the quartz-carbonate metallogenic stage (Ⅲ). Three types of inclusions have primarily developed in the ore bodies, namely gas-liquid two-phase inclusions (W-type), CO2-bearing inclusions (C-type), and pure CO2 inclusions (PC-type). Stage I primarily witnessed the development of C- and W-type inclusions and a small quantity of PC-type inclusions, and stage II mainly saw the development of W-type inclusions and a small amount of C-type inclusions. The quartz fluid inclusions formed in stages I and II have homogenization temperature ranges of 151~270 ℃ and 126~240 ℃, respectively, which exhibits a downward trend. Their salinity varies slightly in the ranges of 3.8%~22.42% NaCleqv and 4.16%~20.48% NaCleqv, respectively, indicating a low-salinity environment. Their CO2 content transformed from enrichment into deficiency. The metallogenic pressure and depth were estimated to be 22.08~76.6 MPa and 3.77~7.13 km, respectively. Therefore, the Dongjianian silver deposit is a low-salinity medium- to low-temperature meso-epithermal silver deposit.

Key wordsDongjianian silver deposit    fluid inclusion characteristics    hydrothermal deposit    Xiaoqinling Mountains    Henan
收稿日期: 2022-03-02      修回日期: 2022-07-22      出版日期: 2023-04-20
ZTFLH:  P632  
基金资助:河南省“探矿权、采矿权”价款(2018-22-06);河南省地质矿产勘查开发局地质科研项目(2017-01)
引用本文:   
刘畅, 张参辉, 张鑫, 纵瑞. 河南灵宝董家埝银矿床流体包裹体特征及矿床成因[J]. 物探与化探, 2023, 47(2): 343-352.
LIU Chang, ZHANG Can-Hui, ZHANG Xin, ZONG Rui. Fluid inclusions and formation mechanisms of the Dongjianian silver deposit in Lingbao City, Henan Province, China. Geophysical and Geochemical Exploration, 2023, 47(2): 343-352.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1095      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/343
Fig.1  董家埝银矿矿区地质简图(据文献[23]修改)
1—第四系;2—寒武系;3—震旦系;4—冯家湾组;5—杜关组;6—巡检司组;7—龙家园组;8—高山河组;9—新太古界太华群片麻岩;10—小河岩体;11—桂家峪岩体;12—地质界线;13—向斜构造;14—背形构造;15—断层及产状;16—碎裂岩带;17—金矿床;18—铅银矿床;19—城镇;20—研究区范围;①—孟家村-民湾向斜;②—七树坪向斜;③—老鸦岔背形;④—庙沟向斜;⑤—上杨砦背形
Fig.2  董家埝银矿床M1-Ⅰ主矿体平面示意
1—第四系;2—官道口群龙家园组;3—官道口群高山河组;4—太古宇太华群;5—小河二长花岗岩;6—闪长岩脉;7—地质界线;8—实测及推测的构造蚀变带;9—实测及推测的断层;10—银矿体位置及编号;11—勘探线及编号;12—见矿化钻孔;13—见矿钻孔;14—探槽或钻孔控制的主矿体品位及厚度;15—探槽及编号;16—取样范围
Fig.3  董家埝银矿床的金属矿物及矿化
a—TC01探槽光片,方铅矿(Gn)、闪锌矿(Sp)、黄铜矿(Ccp)等共伴生;b—TC01探槽光片,细粒黄铁矿(Py)、螺状硫银矿(Arn)、硫砷银矿(Bgt)共伴生;c—TC1探槽中的细脉状—浸染状金属矿化;d—ZK0001钻孔中的黄铁矿化、方铅矿化银矿石
Fig.4  董家埝银矿床的脉石矿物特征
a—银矿化蚀变岩薄片:岩石主要由钾长石(Kfs)、石英(Qtz)、 绢云母(Ser)等组成;b—钻孔银矿石薄片:岩石主要由斜长石(Pl)、钾长石(Kfs)、石英(Qtz)、黑云母(Bt)等组成
Fig.5  董家埝银矿石英流体包裹体显微照片
a—第Ⅰ阶段的纯CO2包裹体;b—第Ⅲ阶段的气液两相包裹体;c—第Ⅲ阶段的成群分布包裹体;d—第Ⅱ阶段的含CO2两相包裹体;e—第Ⅱ阶段的气液两相及纯CO2包裹体;f—第Ⅱ阶段的含CO2三相包裹体
成矿阶段 包裹体类型 T m , C O 2/℃ Tm,ice/℃ T h , C O 2/℃ Tm,clath/℃ Th,tot/℃
石英—黄铁矿阶段(Ⅰ) W型包裹体 -1.0~9.0 210~270
C型包裹体 -56.9~-56.5 12.1~29.6 7.2~10.8 151~268
石英—多金属
硫化物阶段(Ⅱ)
W型包裹体 -0.2~-3.5 126~240
C型包裹体 -56.8~-56.6 20.2~24.6 8~11.9 127~238
Table 1  董家埝银矿床流体包裹体显微测温结果
Fig.6  董家埝银矿床第Ⅰ(a)、Ⅱ(b)成矿阶段流体包裹体均一温度及盐度直方图
Fig.7  流体包裹体成分激光拉曼位移图谱
a、b—第Ⅰ阶段石英包裹体成分;c—第Ⅱ阶段石英包裹体成分;d—第Ⅲ阶段石英包裹体成分
Fig.8  矿区银矿体平面(a)、第00勘探线钻孔剖面(b)[19]
1—地质界线;2—断层及产状;3—矿体及编号;4—勘探线及编号;5—钻孔及编号;6—蚀变界限;Q—第四系;Jxg—高山河组;Ar3T—新太古界太华群;Pt2Xηγ—小河二长花岗岩;A—内蚀变带;B—中蚀变带;C—外蚀变带;D—正常围岩
[22] Feng J Z. Structural ore-controlling law and ore-controlling model of the Xiaoqinling gold deposit,Henan Province[J]. Mineral Resources and Geology, 2009, 23(4):302-307.
[23] 赵海香. 河南小秦岭金矿成矿作用地球化学研究[D]. 南京: 南京大学, 2011.
[23] Zhao H X. Geochemical study of gold mineralization in Xiaoqinling, Henan Province[D]. Nanjing: Nanjing University, 2011.
[24] 国家能源局. SY/T 6010—2011中华人民共和国石油天然气行业标准:沉积盆地流体包裹体显微测温方法[S]. 2011.
[24] National Energy Administration. SY/T 6010—2011 Petroleum and natural gas industry standards of the People ’s Republic of China:Microscopic temperature measurement method for fluid inclusions in sedimentary basins[S]. 2011.
[25] Hall D L, Sterner S M, Bodnar R J. Freezing point depression of NaCl-KCl-H2O solutions[J]. Econ Geol, 1988, 83(1):197-202.
doi: 10.2113/gsecongeo.83.1.197
[26] 刘斌, 段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用[J]. 矿物学报, 1987, 7(4):345-352.
[26] Liu B, Duan G X. The density and isochoric formulae for NaCl-H2O fluid inclusions(salinity≤25wt%)and their applications[J]. Acta Mineralogica Sinica, 1987, 7(4):345-352.
[27] Collins P L F. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of sal inity[J]. Econ Geol, 1979, 74: 1435-1444.
doi: 10.2113/gsecongeo.74.6.1435
[28] 孙丰月, 金巍, 李碧乐, 等. 关于脉状热液金矿床成矿深度的思考[J]. 长春科技大学学报, 2000, 30(S):27-30.
[28] Sun F Y, Jin W, Li B L, et al. Thoughts on the mineralization depth of the vein hydrothermal gold deposit[J]. Journal of Changchun University of Science and Technology, 2000, 30(S):27-30.
[29] 李晶, 陈衍景, 李强之, 等. 甘肃阳山金矿流体包裹体地球化学和矿床成因类型[J]. 岩石学报, 2007, 23(9):2144-2154.
[29] Li J, Chen Y J, Li Q Z, et al. Geochemistry and genesis types of fluid inclusions of Yangshan gold deposit in Gansu[J]. Acta Petrologica Sinica, 2007, 23(9):2144-2154.
[30] 陈衍景, 倪培, 范宏瑞, 等. 不同类型热液金矿系统的流体包裹体特征[J]. 岩石学报, 2007, 23(9):2085-2108.
[30] Chen Y J, Ni P, Fan H R, et al. Diagnostic fluid inclusions of different types hydrothermal gold deposits[J]. Acta Petrologica Sinica, 2007, 23(9): 2085-2108.
[31] 张静, 陈衍景, 李国平, 等. 河南内乡县银洞沟银矿地质和流体包裹体特征及成因类型[J]. 矿物岩石, 2004, 24(3):55-64.
[31] Zhang J, Chen Y J, Li G P, et al. Geological and fluid inclusion characteristics and genetic types of Yindonggou silver deposit in Neixiang County,Henan Province[J]. Mineral Rocks, 2004, 24(3):55-64.
[32] 陈衍景. 造山型矿床、成矿模式及找矿潜力[J]. 中国地质, 2006, 33(6):1181-1196.
[1] 王义天, 毛景文. 碰撞造山作用期后伸展体制下的成矿作用——以小秦岭金矿集中区为例[J]. 地质通报, 2002(Z2):562-566.
[1] Wang Y T, Mao J W. Mineralization under the extension system after the collision orogenic period:A case study of the Xiaoqinling gold deposit area[J]. Geological Bulletin, 2002(Z2):562-566.
[2] 王晋定, 王大钊, 詹小飞, 等. 小秦岭金成矿区南矿带构造控矿规律和矿床定位样式[J]. 大地构造与成矿学, 2018, 42(6):1064-1077.
[2] Wang J D, Wang D Z, Zhan X F, et al. Tectonic ore-controlling laws and deposit positioning styles in the southern ore belt of the Xiaoqinling gold metallogenic area[J]. Tectonics and Mineralization, 2018, 42(6):1064-1077.
[3] 刘宗彦, 张灯堂, 刘运华, 等. 小秦岭金矿田韧性剪切带的控矿规律及中深部成矿分析[J]. 矿产与地质, 2018, 32(4):605-615.
[3] Liu Z Y, Zhang D T, Liu Y H, et al. Ore-controlling law and metallogenic analysis of the ductile shear zone in the Xiaoqinling gold ore field[J]. Mineral Resources and Geology, 2018, 32(4):605-615.
[4] 吴晓贵. 小秦岭东桐峪金矿床稳定同位素地球化学及成矿物质来源[J]. 西北地质, 2016, 49(4):91-98.
[4] Wu X G. Stable isotope geochemistry and source of ore-forming materials of Dongtongyu gold deposit in Xiaoqinling[J]. Northwest Geology, 2016, 49(4):91-98.
[5] 铁健康, 董少波, 马林霄, 等. 小秦岭文峪金矿床深部地质特征及成矿规律[J]. 山东国土资源, 2015, 31(3):7-11,15.
[5] Tie J K, Dong S B, Ma L X, et al. Deep geological characteristics and metallogenic regularity of the Wenyu gold deposit in Xiaoqinling[J]. Shandong Land and Resources, 2015, 31(3):7-11,15.
[6] Mao J W, Qiu Y M, Goldfarb R J, et al. Gold deposits in the Xiaoqinling-Xiong'ershan region,Qinling Mountains, Central China[J]. Mineralium Deposita, 2002, 37:306-325.
doi: 10.1007/s00126-001-0248-1
[7] Bi S J, Li J W, Zhou M F, et al. Gold distribution in As-deficient pyrite and telluride mineralogy of the Yangzhaiyu gold deposit,Xiaoqinling district,southern North China craton[J]. Mineralium Deposita, 2011, 46:925-941.
doi: 10.1007/s00126-011-0359-2
[8] 郭云成. 小秦岭大湖金钼矿床包裹体特征与成矿物质来源研究[D]. 北京: 中国地质大学(北京), 2018.
[8] Guo Y C. Characteristics of inclusions and source of ore-forming materials in the Xiaohuling Dahu gold-molybdenum deposit[D]. Beijing: China University of Geosciences (Beijing), 2018.
[9] 曾昊. 河南省小秦岭地区灵金一矿成矿流体研究[D]. 北京: 中国地质大学(北京), 2016.
[9] Zeng H. Research on the ore-forming fluid of Lingjin No.1 Mine,Xiaoqinling area,Henan Province[D]. Beijing: China University of Geosciences(Beijing), 2016.
[10] 倪智勇, 李诺, 管申进, 等. 河南小秦岭金矿田大湖金—钼矿床流体包裹体特征及矿床成因[J]. 岩石学报, 2008, 24(9):2058-2068.
[10] Ni Z Y, Li N, Guan S J, et al. Characteristics of fluid inclusions and ore genesis of the Dahu Au-Mo deposit in the Xiaoqinling gold field,Henan Province[J]. Acta Petrologica Sinica, 2008, 24(9):2058-2068.
[11] 周振菊, 蒋少涌, 秦艳, 等. 小秦岭文峪金矿床流体包裹体研究及矿床成因[J]. 岩石学报, 2011, 27(12):3787-3799.
[11] Zhou Z J, Jiang S Y, Qin Y, et al. Study on fluid inclusions and genesis of Wenyu gold deposit in Xiaoqinling[J]. Acta Petrologica Sinica, 2011, 27(12):3787-3799.
[12] 赵海香, 嵇静, 赵智, 等. 小秦岭大湖金钼矿流体包裹体研究及矿床成因[J]. 高校地质学报, 2017, 23(1):72-82.
[12] Zhao H X, Yun J, Zhao Z, et al. Research on fluid inclusions and genesis of Dahu gold and molybdenum deposit in Xiaoqinling[J]. Geological Journal of China Universities, 2017, 23(1):72-82.
[13] 黎世美, 瞿伦全, 苏振邦, 等. 小秦岭金矿地质和成矿预测[M]. 北京: 地质出版社, 1996.
[13] Li S M, Qu L Q, Su Z B, et al. The geology and metallogenic prediction of the gold deposit in Xiaoqinling[M]. Beijing: Geological Publishing House, 1996.
[14] Jiang N, Xu J H, Song M X. Fluid inclusion characteristics of mesothermal gold deposits in the Xiaoqinling district,Shannxi and Henan Provinces,People’s Republic of China[J]. Mineralium Deposit, 1999, 34:150-162.
doi: 10.1007/s001260050192
[15] Fan H R, Xie Y H, Zhao R, et al. Dual origions of Xiaoqinling gold-bearing quartz veins:Fluid inclusion evidence[J]. Chinese Science Bulletin, 2000, 45(15):1424-1430.
doi: 10.1007/BF02886252
[16] Zhou Z J, Chen Y J, Jiang S Y, et al. Geology, geochemistry and ore genesis of the Wenyu gold deposit,Xiaoqinling gold field,Qinling Orogen, southern margin of North China Craton[J]. Ore Geology Reviews, 2014, 59(6):1-20.
doi: 10.1016/j.oregeorev.2013.12.001
[17] Zhou Z J, Chen Y J, Jiang S Y, et al. Isotope and fluid inclusion geochemistry and genesis of the Qiangma gold deposit,Xiaoqinling gold field,Qinling Orogen,China[J]. Ore Geology Reviews, 2015, 66(2):47-64.
doi: 10.1016/j.oregeorev.2014.10.020
[18] 蒋少涌, 戴宝章, 姜耀辉, 等. 胶东和小秦岭:两类不同构造环境中的造山型金矿省[J]. 岩石学报, 2009, 25(11):2727-2738.
[18] Jiang S Y, Dai B Z, Jiang Y H, et al. Jiaodong and Xiaoqinlinga:Two orogenic gold provinces formed in different tectonic settings[J]. Acta Petrologica Sinica, 2009, 25(11):2727-2738.
[19] 纵瑞, 董岘证, 张凯涛, 等. 豫西董家埝银矿床地质特征及矿床成因探讨[J]. 资源环境与工程, 2018, 32(3):367-372.
[19] Zong R, Dong D Z, Zhang K T, et al. Geological characteristics and genesis of Dongjiayu silver deposit in western Henan[J]. Resources Environment & Engineering, 2018, 32(3):367-372.
[20] 郭保健, 徐孟罗, 王志光, 等. 熊耳山北坡拆离断层带地球化学特征及其与金银矿化的关系[J]. 矿产与地质, 1997, 11(1):21-26.
[20] Guo B J, Xu M L, Wang Z G, et al. Geochemical characteristics of the detached fault zone on the northern slope of Xiong'er Mountain and its relationship with gold and silver mineralization[J]. Mineral Resources and Geology, 1997, 11(1):21-26.
[21] 栾世伟, 曹殿春, 方耀奎, 等. 小秦岭金矿床地球化学[J]. 矿物岩石, 1985(2):2-134.
[21] Luan S W, Cao D C, Fang Y K, et al. Geochemistry of the Xiaoqinling gold deposit[J]. Mineral Rocks, 1985(2):2-134.
[32] Chen Y J. Orogenictype deposits and their metallogenic model and exploration potential[J]. Geology in China, 2006, 33(6):1181-1196.
[22] 冯建之. 河南小秦岭金矿构造控矿规律及控矿模式[J]. 矿产与地质, 2009, 23(4): 302-307.
[1] 宋威方, 刘建中, 吴攀, 李俊海, 王泽鹏, 杨成富, 谭亲平, 王大福. 构造地球化学弱信息提取方法在黔西南卡林型金矿找矿中的应用[J]. 物探与化探, 2022, 46(6): 1338-1348.
[2] 魏从玲, 陈建立, 郭鹏. 基于MRAS证据权重模型的河南老湾地区金矿成矿预测[J]. 物探与化探, 2022, 46(3): 653-660.
[3] 赵吉昌, 范应, 雷一兰, 姚宾宾. 构造地球化学岩屑测量在甘肃党河南山地区找金中的应用[J]. 物探与化探, 2021, 45(4): 923-932.
[4] 刘纪峰, 白德胜, 张凯涛, 王金路, 卫建征, 苏阳艳. 河南方城刘营萤石矿稀土元素特征及成矿年龄[J]. 物探与化探, 2021, 45(3): 639-644.
[5] 郑向光, 卢琳, 刘会毅, 刘晓龙, 徐坤, 张治林. 小秦岭地区矿田构造深部探测初步认识[J]. 物探与化探, 2020, 44(4): 894-904.
[6] 宋豪, 张义蜜, 王万银. 河南内黄—浚县一带重磁异常与深部磁铁矿靶区预测研究[J]. 物探与化探, 2019, 43(6): 1191-1204.
[7] 樊玉朋, 李思伟, 王子洋, 刘丹. 张家口崇礼小西湾侵入岩成矿条件及矿化机制研究[J]. 物探与化探, 2018, 42(1): 111-117.
[8] 任爱琴, 张宏伟, 吴宏伟. 河南千鹅冲钼矿地球化学异常特征及找矿模型[J]. 物探与化探, 2014, 38(5): 865-871.
[9] 赵荣军, 张宏伟, 刘亚南, 李彩霞, 饶欢, 安迪宇. 河南省新县上棋盘地区地球化学异常特征及评价[J]. 物探与化探, 2014, 38(5): 929-935.
[10] 申随水, 李治时, 杨守渠. 小秦岭地区大比例尺磁测方法找金效果[J]. 物探与化探, 2014, 38(4): 635-640.
[11] 邵平安. 河南省区域岩石密度背景参考值统计特征[J]. 物探与化探, 2014, 38(1): 71-74,80.
[12] 藏金生. 刘山岩铜锌矿床地球化学异常特征及找矿评价标志[J]. 物探与化探, 2013, 37(2): 194-198.
[13] 张江明, 庄光军, 姜荣. 石瑶沟大型斑岩钼矿床的物化探找矿效果[J]. 物探与化探, 2011, 35(4): 483-487.
[14] 付治国, 瓮纪昌, 燕长海, 高胜淮.
东秦岭冷水北沟铅锌银矿床同位素地球化学特征
[J]. 物探与化探, 2010, 34(1): 34-39.
[15] 付治国, 瓮纪昌, 卢欣祥. 小秦岭—熊耳山地区金矿硫同位素地球化学特征[J]. 物探与化探, 2009, 33(5): 507-514.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com