Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (6): 1396-1402    DOI: 10.11720/wtyht.2022.1610
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
强干扰环境下铁矿导水通道精细探测研究
王荣军(), 周超群, 崔杰, 谢明星, 秦壮杰
五矿邯邢矿业有限公司 北洺河铁矿,河北 武安 056303
Fine detection of water-conducting channels in iron mine under strong interferences
WANG Rong-Jun(), ZHOU Chao-Qun, CUI Jie, XIE Ming-Xing, QIN Zhuang-Jie
Beiminghe Iron Mine of Minmetals Hanxing Mining Co., Ltd., Wu’an 056303, China
全文: PDF(2418 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为实现北洺河铁矿不明涌水异常区域导水通道的精确定位,保证该矿安全生产,采用矿井瞬变电磁法对该铁矿-110 m水平11#穿脉顶板岩层进行了探测。在对金属干扰下的矿井瞬变电磁响应特征进行理论分析的基础上,结合该铁矿实际地质情况分析其地球物理特征,采用系数校正法对实测数据进行金属干扰校正,再将其作为初始模型进行全空间瞬变电磁蜂群算法反演处理,最终得到了工作面顶板高分辨率电阻率成像结果,结合已有地质资料,实现了富水异常区以及导水通道的精细探测;探测结果得到了钻孔验证。研究表明,采用有效的数据处理手段,矿井瞬变电磁法可以提高铁矿工作面顶板岩层的富水异常位置的探测精度,为铁矿防治水工作提供有效的技术保障。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王荣军
周超群
崔杰
谢明星
秦壮杰
关键词 强干扰铁矿矿井瞬变电磁富水性精细探测    
Abstract

To achieve the accurate positioning of the water-conducting channels in the areas with unknown anomalous water inrush in the Beiminghe iron mine to ensure the safe production of the mine, this study explored the 11# across-vein roof at -110 m level in this iron mine using the mine transient electromagnetic method (MTEM). Firstly, this study briefly introduced the basic principle of MTEM and theoretically analyzed the characteristics of mine transient electromagnetic response under metal interferences. Then, it analyzed the geophysical characteristics based on the geology of the iron mine and corrected the measured data targeting metal interferences using the coefficient correction method. Afterward, the measured data were used as the initial model for the inversion of full-space transient electromagnetic using the bee colony algorithm, obtaining the high-resolution resistivity images of the working face roof. The images combined with the existing geological data allow for the fine detection of water-rich anomalous areas and water-conducting channels, and the detection results were verified by drilling. The results show that the MTEM can effectively improve the detection accuracy of water-rich anomalous positions in the roof strata of the working face in iron mines by means of effective data processing, thus providing effective technical support for water control in iron mines.

Key wordsstrong interferences    iron mine    mine transient electromagnetic method    water abundance    fine detection
收稿日期: 2021-11-19      修回日期: 2022-01-09      出版日期: 2022-12-20
ZTFLH:  P631  
基金资助:国家“十三五”重点研发计划项目(2016YFC0801600);河北省自然科学基金项目(D2020402032);河北省自然科学基金项目(D2020402013)
作者简介: 王荣军(1975-),男,高级工程师,研究方向为金属和非金属矿山安全开采。Email:wrjironmine@163.com
引用本文:   
王荣军, 周超群, 崔杰, 谢明星, 秦壮杰. 强干扰环境下铁矿导水通道精细探测研究[J]. 物探与化探, 2022, 46(6): 1396-1402.
WANG Rong-Jun, ZHOU Chao-Qun, CUI Jie, XIE Ming-Xing, QIN Zhuang-Jie. Fine detection of water-conducting channels in iron mine under strong interferences. Geophysical and Geochemical Exploration, 2022, 46(6): 1396-1402.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1610      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I6/1396
Fig.1  矿井瞬变电磁“烟圈效应”示意
Fig.2  矿井瞬变电磁探测模型示意
Fig.3  金属干扰下的衰减曲线
Fig.4  矿井瞬变电磁测线布置
Fig.5  金属干扰校正前后衰减曲线对比
Fig.6  150测点金属干扰校正前后衰减曲线对比
Fig.7  金属干扰校正前(a)校正后(b)视电阻率拟断面
Fig.8  蜂群算法反演电阻率断面
孔号 钻孔深度/m 孔内情况
1# 25 灰岩,岩石破碎严重,节理裂隙发育,裂隙被黄泥充填,在24 m处有少量出水
2# 40 灰岩,岩石较完整,在6 m处开始见铁矿,29.5 m后为采空区
3# 40 灰岩,岩石破碎,7~10 m和14~25 m处夹黄泥;在20 m开始出水,25 m后水量增大
Table 1  钻孔实际揭露情况
Fig.9  钻孔窥视结果
[1] 程久龙, 李飞, 彭苏萍, 等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报, 2014, 39(8):1742-1750.
[1] Cheng J L, Li F, Peng S P, et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society, 2014, 39(8):1742 -1750.
[2] 赵家宏, 程久龙, 温来福. 基于矿井瞬变电磁法的侏罗系煤层顶板富水性研究[J]. 煤炭技术, 2018, 37(12):97-100.
[2] Zhao J H, Cheng J L, Wen L F. Study on water-richness of mine roof rock in Jurassic coal seam based on mine transient electromagnetic method[J]. Coal Technology, 2018, 37(12):97-100.
[3] 徐栓祥, 程久龙, 董毅, 等. 矿井瞬变电磁与红外测温联合超前探测方法与应用[J]. 中国矿业, 2019, 28(5):136-139,145.
[3] Xu S X, Cheng J L, Dong Y, et al. The ahead detection combined method of the mine transient electromagnetic and infrared surveying and its application[J]. China Mining Magazine, 2019, 28(5):136-139,145.
[4] 牟义, 李江华, 徐慧, 等. 矿井瞬变电磁法参数优化试验及超前探测应用[J]. 煤炭科学技术, 2020, 48(6): 184-190.
[4] Mu Y, Li J H, Xu H, et al. Parameters optimization test of mine transient electromagnetic method and application of advanced detection[J]. Coal Science and Technology, 2020, 48(6): 184-190.
[5] 贾三石, 邵安林, 王海龙, 等. 基于TEM的井下铁矿采空区探测评价[J]. 东北大学学报:自然科学版, 2011, 32(9):1340-1343.
[5] Jia S S, Shao A L, Wang H L, et al. Detection and evaluation of underground iron ore goaf based on TEM[J]. Journal of North-eastern University:Natural Science, 2011, 32(9):1340-1343.
[6] 李静, 刘向红, 张平松, 等. 矿井瞬变电磁精细探查技术在铁矿防治水中的应用[J]. 光谱实验室, 2013, 30(4):1807-1812.
[6] Li J, Liu X H, Zhang P S, et al. Application of MTEM’s fine exploration technology to detection of iron mine[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(4):1807-1812.
[7] 刘殿军, 贾三石, 王恩德, 等. 井下铁矿巷道掘进工作面超前预警探测[J]. 金属矿山, 2014(11):147-150.
[7] Liu D J, Jia S S, Wang E D, et al. Advanced early warning detection ahead of tunneling in underground iron ore[J]. Mine Metal, 2014(11):147-150.
[8] 平守国, 王永增, 张忠海, 等. 齐大山铁矿南帮含水构造带探测研究[J]. 金属矿山, 2020(1):56-62.
[8] Ping S G, Wang Y Z, Zhang Z H, et al. Study on the detection of water-bearing structural zones in the south side of Qidashan iron mine[J]. Mine Metal, 2020(1):56-62.
[9] 于景邨. 矿井瞬变电磁法勘探[M]. 徐州: 中国矿业大学出版社, 2007.
[9] Yu J C. Mine transient electromagnetic prospecting[M]. Xuzhou: China University of Mining and Technology Press, 2007.
[10] 周金, 程久龙, 温来福. 矿井瞬变电磁法反演方法研究进展与展望[J]. 煤矿安全, 2017, 48(4):180-183,187.
[10] Zhou J, Cheng J L, Wen L F. Research progress and prospect on inversion methods of mine transient electromagnetic method[J]. Safety in Coal Mines, 2017, 48(4):180-183,187.
[11] 李明星, 程建远. 基于标准差标准化的矿井瞬变电磁数据处理方法研究[J]. 煤炭科学技术, 2019, 47(5): 225-229.
[11] Li M X, Cheng J Y. Study on mine transient electromagnetic data processing method based on standard deviation standardization[J]. Coal Science and Technology, 2019, 47(5): 225-229.
[12] 程久龙, 李明星, 肖艳丽, 等. 全空间条件下矿井瞬变电磁法粒子群优化反演研究[J]. 地球物理学报, 2014, 57(10):3478-3484.
[12] Cheng J L. Li M X, Xiao Y L, et al. Study on particle swarm optimization inversion of mine transient electromagnetic method in whole-space[J]. Chinese Journal of Geophysics, 2014, 57(10):3478-3484.
[13] 李明星. 矿井瞬变电磁PSO-DLS组合算法反演研究[J]. 煤炭科学技术, 2019, 47(9): 268-272.
[13] Li M X. Study on mine transient electromagnetic method inversion based on PSO-DLS combination algorithm[J]. Coal Science and Technology, 2019, 47(9): 268-272.
[14] 牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.
[14] Niu Z L. The principle of transient electromagnetic method[M]. Changsha: Central South University Press, 2007.
[15] 李飞, 程久龙, 温来福, 等. 瞬变电磁场有限差分与数字滤波双模型三维正演方法[J]. 地球物理学进展, 2020, 35(3): 963-969.
[15] Li F, Cheng J L, Wen L F, et al. Double model method for 3D TEM modeling based on combination of FDTD and digital filtering method[J]. Progress in Geophysics, 2020, 35(3): 963-969.
[16] 周超群. 强干扰条件下矿井电梯井井壁损伤精细探测[J]. 地球科学前沿, 2021, 11(1): 12-20.
[16] Zhou C Q. Fine detection of mine elevator shaft wall damage under the condition of strong interference[J]. Advances in Geosciences, 2021, 11(1): 12-20.
doi: 10.12677/AG.2021.111002
[17] 杨允林, 程久龙, 赵家宏, 等. 带式输送机影响下矿井瞬变电磁响应特征与校正研究[J]. 煤矿安全, 2019, 50(7):282-284,288.
[17] Yang Y L, Cheng J L, Zhao J H, et al. Study on characteristics of mine transient electromagnetic response under the influence of belt conveyor and interference correction[J]. Safety in Coal Mines, 2019, 50(7):282-284,288.
[18] 时志浩, 程久龙, 董毅, 等. 锚网支护对矿井瞬变电磁响应的影响与校正[J]. 煤矿安全, 2019, 50(4):108-111.
[18] Shi Z H, Cheng J L, Dong Y, et al. Influence of bolt-net support on mine transient electromagnetic response and its correction[J]. Safety in Coal Mines, 2019, 50(4):108-111.
[19] 周金, 程久龙, 温来福. 矿井瞬变电磁金属干扰响应特征与校正方法[J]. 中国矿业, 2017, 26(8):146-149,164.
[19] Zhou J, Cheng J L, Wen L F. Response characteristics of metallic facilities and correction method on mine transient electromagnetic surveying[J]. China Mining Magazine, 2017, 26(8):146-149,164.
[20] 周璇, 刘树才, 常江浩, 等. 金属棚支架对矿井瞬变电磁探测影响及校正技术[J]. 煤炭科学技术, 2014, 42(11): 101-104.
[20] Zhou X, Liu S C, Chang J H, et al. Influences on metal support to mine transient electromagnetic detection and correction tech-nology[J]. Coal Science and Technology, 2014, 42(11): 101-104.
[21] Huang S H, Cheng J L, Wen L F, et al. Study on metal interference correction method in mine TEM based on the fitting function[C]// 7th International Conference on Environmental and Engineering Geophysics, 2016.
[22] Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Technical Report-TR06, Erciyes. University, Engineering Faculty, Computer Engineering Department, 2005.
[1] 齐朝华. 广域电磁法在巨厚低阻层下水文地质勘探中的应用——以安徽淮南某煤矿为例[J]. 物探与化探, 2023, 47(3): 700-706.
[2] 吴成平, 于长春, 熊盛青, 徐剑春, 徐东礼, 乔春贵. 自相关滤波方法及其在山东齐河—禹城铁矿勘查应用[J]. 物探与化探, 2022, 46(4): 940-945.
[3] 陈伟, 赵国凤, 费振正, 罗丁, 彭江英, 黄岩, 贾朔. 无人直升机航磁方法在安徽省马鞍山市向山南—大甸塘地区铁矿普查中的应用[J]. 物探与化探, 2021, 45(4): 890-897.
[4] 周明磊, 汝亮, 朱裕振, 于长春, 吴成平, 高志军, 张文艳, 邵玉宝. 山东齐河—禹城地区重磁场特征及找矿预测[J]. 物探与化探, 2021, 45(2): 301-307.
[5] 田红军, 张光大, 刘光迪, 游文兵, 张应文. 黔北台隆区地热勘探中广域电磁法的应用效果[J]. 物探与化探, 2020, 44(5): 1093-1097.
[6] 李显成, 陈国庆, 邓明, 罗贤虎, 王猛, 段妮妮, 周励. 海洋可控源电磁发射系统状态信息采集技术研究[J]. 物探与化探, 2020, 44(5): 1153-1160.
[7] 陈大磊, 陈卫营, 郭朋, 王润生, 王洪军, 张超, 马启合, 贺春燕. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5): 1226-1232.
[8] 张磊, 王万银, 赵修军, 张义蜜. 基于重磁场特征的新蔡铁矿区构造单元分布特征[J]. 物探与化探, 2020, 44(4): 975-984.
[9] 顾端阳, 窦文博, 丁富寿, 严力, 吕浩. 疏松砂岩气藏低阻气层成因及识别研究——以柴达木盆地涩北气田为例[J]. 物探与化探, 2020, 44(3): 649-655.
[10] 王昊, 严加永, 孟贵祥, 吕庆田, 王栩. 地磁梯度测量及其在金属矿勘查中的试验——以拉依克勒克铜铁矿为例[J]. 物探与化探, 2019, 43(6): 1173-1181.
[11] 朱裕振, 强建科, 王林飞, 张文艳, 戴世坤. 深埋铁矿磁测数据三维反演分析与找矿靶区预测[J]. 物探与化探, 2019, 43(6): 1182-1190.
[12] 宋豪, 张义蜜, 王万银. 河南内黄—浚县一带重磁异常与深部磁铁矿靶区预测研究[J]. 物探与化探, 2019, 43(6): 1191-1204.
[13] 何敬梓, 黄旭钊, 葛藤菲, 范正国, 代达龙, 王思浔. 云南保山核桃坪铅锌矿外围航磁异常找矿进展[J]. 物探与化探, 2018, 42(6): 1201-1208.
[14] 李玉录, 邢利娟, 拜占红, 刘志华, 王震. 综合物探方法在青海省跃进山铁矿勘查中的应用[J]. 物探与化探, 2018, 42(5): 889-895.
[15] 罗凡, 严加永, 付光明. 基于已知信息约束的重磁三维反演在深部磁铁矿勘查中的应用——以安徽泥河铁矿为例[J]. 物探与化探, 2018, 42(1): 50-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com