Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (4): 798-807    DOI: 10.11720/wtyht.2022.1444
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
原生晕中元素及元素组合空间变化性研究——以青海省扎家同哪金矿为例
侯振广1(), 袁兆宪2()
1.青海省第五地质勘查院,青海 西宁 810008
2.河北地质大学 资源与环境工程研究所,河北 石家庄 050031
The spatial variations of elements and element associations in the primary geochemical halos:A case study of the Zhajiatongna gold deposit in Qinghai province
HOU Zhen-Guang1(), YUAN Zhao-Xian2()
1. No. 5 Exploration Institute of Geology and Mineral Resources, Qinghai Bureau of Geological Exploration and Mineral Development, Xining 810008, China
2. Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang 050031, China
全文: PDF(5123 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

原生晕普遍存在于各种矿床尤其是热液矿床中,是深部找矿必不可少的地球化学标志。目前对于原生晕中元素的富集贫化及组分分带研究较多,而对于元素及组合元素的空间变化性关注较少。本文基于青海省扎家同哪金矿2 279个钻孔原生晕样品地球化学数据,拟使用元素富集系数计算和多元统计分析的方法,研究矿床不同空间位置的元素和元素组合的变化特征。结果显示,从围岩样品、矿化围岩样品、矿石样品和全体样品中都提取出了代表围岩组分和矿化组分的元素组合,反映了矿床形成过程的本质是矿化组分叠加于围岩组分。在矿石样品中,还提取出了中高温元素组合和中低温元素组合,而在矿化围岩样品中,提取出了高温成矿元素组合和中低温成矿元素组合,反映了矿质沉淀机制以及沉淀时间和空间的差异。研究揭示,在扎家同哪金矿原生晕中,从外围向矿化中心,从定量的角度,成矿相关元素总体上表现为富集程度递增及富集元素数量增多的趋势,而从定性的角度,表现为围岩—矿化元素组合叠加中高温—中低温和高温—中低温成矿元素组合。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯振广
袁兆宪
关键词 原生晕富集系数因子分析元素组合扎家同哪金矿    
Abstract

The primary geochemical halos, which exist in nearly all types of deposits, especially in hydrothermal deposits, serve as an essential geochemical indicator for deep prospecting. Many studies have been presently carried out on the elemental enrichment/depletion and component zoning in primary geochemical halos. However, there is a lack of reports on the spatial variations of elements and associated elements. This study collected geochemical data from 2,279 samples of the boreholes in the Zhajiatongna gold deposit and then calculated the enrichment factors and conducted a multivariate analysis to characterize the spatial variations of elements and element associations of the deposit. The element associations representing the components of surrounding rocks and mineralized components were extracted from all samples including surrounding rock samples, mineralized surrounding rock samples, and ore samples. They reflect that the deposit was formed by the superposition of mineralized components on the components of surrounding rocks in essence. Moreover, high-medium- and medium-low-temperature element associations were extracted from the ore samples, and high- and medium-low-temperature metallogenic element associations were extracted from the mineralized surrounding rock samples, indicating mineral precipitation mechanisms and the differences in the precipitation time and space. As suggested by the results, the primary geochemical halos of the Zhajiatongna deposit show the following variations from the periphery to the mineralization center: the mineralization-related elements generally exhibit an increasing trend in terms of enrichment degree and the number of enriched element types quantitatively, and the high-medium-temperature-medium-low-temperature and high-temperature-medium-low-temperature metallogenic element associations are superimposed on the surrounding rocks - mineralized element associations.

Key wordsprimary geochemical halo    enrichment factor    factor analysis    element association    Zhajiatongna gold deposit
收稿日期: 2021-08-12      修回日期: 2022-01-25      出版日期: 2022-08-20
ZTFLH:  P  
基金资助:国家重点研发计划项目(2021YFC2900100);国家自然科学基金项目(41602338);河北省自然基金项目(D2021403050)
通讯作者: 袁兆宪
作者简介: 侯振广(1985-),男,工程师,主要从事矿产勘查研究工作。Email: up.hzg@126.com
引用本文:   
侯振广, 袁兆宪. 原生晕中元素及元素组合空间变化性研究——以青海省扎家同哪金矿为例[J]. 物探与化探, 2022, 46(4): 798-807.
HOU Zhen-Guang, YUAN Zhao-Xian. The spatial variations of elements and element associations in the primary geochemical halos:A case study of the Zhajiatongna gold deposit in Qinghai province. Geophysical and Geochemical Exploration, 2022, 46(4): 798-807.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1444      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I4/798
Fig.1  扎家同哪金矿11号勘探线剖面
元素 Ag As Au Cu Hg Mo Pb Sb Sn W Zn
方法 ES AF ICP-MS ICP-MS AF ICP-MS ICP-MS AF ES ICP-MS ICP-MS
检出限 20 0.33 0.25 1 0.5 0.15 0.85 0.046 0.85 0.3 4
Table 1  各元素使用的检测方法和检出限
围岩 矿化围岩 矿石
粉砂质板岩 含黄铁矿化粉砂质板岩、含黄铁矿化碎裂岩化粉砂质板岩、含黄铁矿化毒砂矿化粉砂质板岩 金矿石
泥质板岩 含黄铁矿化泥质板岩、含黄铁矿化碎裂岩化泥质板岩、含黄铁矿化毒砂矿化泥质板岩
长石砂岩 含黄铁矿化长石砂岩、含黄铁矿化碎裂岩化长石砂岩、含黄铁矿化毒砂矿化长石砂岩、含黄铁矿化毒砂矿化碎裂岩化长石砂岩
Table 2  扎家同哪矿床原生晕样品主要岩性
Fig.2  矿化围岩和矿石相对于围岩的元素富集趋势
元素 全体数据 围岩数据 矿化围岩数据 矿石数据
F1 F2 F1 F2 F1 F2 F1 F2
As 0.86 -0.06 -0.11 0.86 -0.84 0.38 0.79 -0.33
Au 0.78 -0.07 -0.11 0.81 -0.84 0.07 0.84 -0.10
Cu -0.06 0.74 0.75 0.01 0.90 0.15 -0.20 0.55
Hg 0.49 0.33 0.38 0.30 0.79 0.43 0.20 0.67
Mo 0.05 0.20 0.21 0.12 -0.02 -0.71
Pb 0.08 0.43 0.59 0.00 0.66 0.46 -0.31 0.39
Sb 0.56 0.10 0.09 0.43 0.21 0.88 -0.01 0.69
Sn -0.09 0.67 0.65 -0.02 0.66 -0.54 -0.46 -0.11
W 0.42 -0.02 0.26 0.68 -0.48 -0.11 0.83 -0.01
Zn 0.01 0.81 0.80 -0.01 0.90 0.27 -0.04 0.69
Table 3  不同位置数据因子分析前两个最大因子中的元素载荷
Fig.3  前两个最大因子的因子载荷
Fig.4  扎家同哪金矿原生晕中元素和元素组合空间分带示意
[1] 刘崇民. 金属矿床原生晕研究进展[J]. 地质学报, 2006, 80(10):1528-1538.
[1] Liu C M. Progress in studies on primary halos of ore deposit[J]. Acta Geologicasinica, 2006, 80(10):1528-1538.
[2] 李惠, 禹斌, 李德亮, 等. 化探深部预测新方法综述[J]. 矿产勘查, 2010, 1(2):156-160.
[2] Li H, Yu B, Li D L, et al. Summary of new methods on deep prediction of geochemical exploration[J]. Mineral Exploration, 2010, 1(2):156-160.
[3] 邵跃. 热液矿床岩石测量(原生晕法)找矿[M]. 北京: 地质出版社, 1997.
[3] Shao Y. Rock prospecting of hydrothermal deposit(primary halo method)[M]. Beijing: Geological Publishing House, 1997.
[4] 欧阳宗圻, 李惠, 刘汉忠. 典型有色金属矿床地球化学异常模式[M]. 北京: 科学出版社, 1990.
[4] Ouyang Z Q, Li H, Liu H Z. Geochemical anomaly models for typical nonferrous metal deposits[M]. Beijing: Science Press, 1990.
[5] 史长义, 汪彩芳. 区域次生地球化学负异常模型及其意义[J]. 物探与化探, 1995, 19(2):104-113.
[5] Shi C Y, Wang C F. The regional secondary geochemical negative anomaley model and its significance[J]. Geophysical and Geochemical Exploration, 1995, 19(2):104-113.
[6] 朴寿成, 刘树田, 连长云, 等. 地球化学负异常及其找矿意义[J]. 地质与勘探, 1996, 32(2):46-50.
[6] Piao S C, Liu S T, Lian C Y, et al. Geochemical negative anomaly and its prospecting significances[J]. Geology and Prospecting, 1996, 32(2):46-50.
[7] Goldberg I S, Abramson G Y, Los V L. Depletion and enrichment of primary haloes:Their importance in the genesis of and exploration for mineral deposits[J]. Geochemistry:Exploration,Environment,Analysis, 2003, 3(3):281-293.
doi: 10.1144/1467-7873/03-011
[8] 徐明钻, 朱立新, 马生明, 等. 多重分形模型在区域地球化学异常分析中的应用探讨[J]. 地球学报, 2010, 31(4):611-618.
[8] Xu M Z, Zhu L X, Ma S M, et al. A tentative discussion on the application of multi-fractal models to the analysis of regional geochemical anomalies[J]. Acta Geoscientica Sinica, 2010, 31(4):611-618.
[9] 马生明, 朱立新, 刘海良, 等. 甘肃北山辉铜山铜矿地球化学异常结构研究[J]. 地球学报, 2011, 32(4):405-412.
[9] Ma S M, Zhu L X, Liu H L, et al. A study of geochemical anomaly structure of the Huitongshan copper deposit in Beishan Area,Gansu Province[J]. Acta GeoscienticaSinica, 2011, 32(4):405-412.
[10] Goldberg I S, Abramson G Y, Haslam C O, et al. Depletion and enrichment zones in the Bendigo gold field:A possible source of gold and implications for exploration[J]. Economic Geology, 2007, 102(4):745-753.
doi: 10.2113/gsecongeo.102.4.745
[11] Beus A A, Grigorian S V. Geochemical exploration methods for mineral deposits[M]. Wilmette: Applied Publishing Ltd, 1977.
[12] Yate Z. Geochemical exploration for deeply hidden ore in southeastern Hubei Province[J]. Journal of Geochemical Exploration, 1989, 33(1):135-144.
doi: 10.1016/0375-6742(89)90024-1
[13] Konstantinov M M, Strujkov S F. Application of indicator halos(signs of ore remobilization)in exploration for blind gold and silver deposits[J]. Journal of Geochemical Exploration, 1995, 54(1):1-17.
doi: 10.1016/0375-6742(95)00003-8
[14] 黄转莹, 路润安. 陕西省凤县铅硐山大型铅锌矿床原生异常分带及分带指数[J]. 地质与勘探, 2003, 39(3):39-44.
[14] Huang Z Y, Lu R A. Zoning characteristics and index of primary geochemical anomalies in Qiandongshan Pb-Zn deposit,Shaanxi Province,China[J]. Geology And Prospecting, 2003, 39(3):39-44.
[15] Liu L M, Peng S L. Prediction of hidden ore bodies by synthesis of geological,geophysical and geochemical information based on dynamic model in Fenghuangshan ore field,Tongling district,China[J]. Journal of Geochemical Exploration, 2004, 81(1):81-98.
doi: 10.1016/j.gexplo.2003.08.004
[16] Ghavami-Riabi R, Theart H F, De Jager C. Detection of concealed Cu-Zn massive sulfide mineralization below eolian sand and a calcrete cover in the eastern part of the Namaqua Metamorphic Province,South Africa[J]. Journal of Geochemical Exploration, 2008, 97(2/3):83-101.
doi: 10.1016/j.gexplo.2007.11.003
[17] Wang C M, Carranza E J, Zhang S T, et al. Characterization of primary geochemical haloes for gold exploration at the Huanxiangwa gold deposit,China[J]. Journal of Geochemical Exploration, 2013, 24:40-58.
[18] Zheng C J, Luo X R, Wen M L, et al. Axial primary halo characterization and deep orebody prediction in the Ashele copper-zinc deposit,Xinjiang,NW China[J]. Journal of Geochemical Exploration, 2020, 213:106509.
doi: 10.1016/j.gexplo.2020.106509
[19] 李惠, 张国义, 王支农, 等. 构造叠加晕法在预测金矿区深部盲矿中的应用效果[J]. 物探与化探, 2003, 27(6):438-440.
[19] Li H, Zhang G Y, Wang Z N, et al. The effect of applying structural superimposed halos to the prognosis of deep blind orebodies in the gold ore district[J]. Geophysical and Geochemical Exploration, 2003, 27(6):438-440.
[20] 李惠, 禹斌, 李永才, 等. 热液型矿床深部盲矿预测的构造叠加晕实用理想模型及其意义[J]. 地质与勘探, 2020, 56(5):889-897.
[20] Li H, Yu B, Li Y C, et al. A new practical ideal model of structural superimposed halos for prediction of deep blind hydrothermal deposits and its significance[J]. Geology and Exploration, 2020, 56(5):889-897.
[21] 王文, 李鹏, 夏有清, 等. 东昆仑大场金矿田扎家同哪矿床地质特征及找矿方向[J]. 青海大学学报:自然科学版, 2012, 30(5):60-68.
[21] Wang W, Li P, Xia Y Q, et al. Geological features and prospecting orientation of Zhajiatongna deposit in Dachang golden orefield of Eastern Kunlun mountain[J]. Journal of Qinghai University:Nature Science Edition, 2012, 30(5):60-68.
[22] 袁兆宪, 侯振广, 任志栋, 等. 金属元素形成原生晕能力定量评价——以青海省扎家同哪金矿为例[J]. 物探与化探, 2021, 45(1):292-300.
[22] Yuan Z X, Hou Z G, Ren Z D, et al. Quantitative evaluation of the ability of elements in forming primary halos:A case study of the Zhajiatongna gold deposit,Qinghai Province[J]. Geophysical and Geochemical Exploration, 2021, 45(1):292-300.
[23] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984.
[23] Liu Y J, Cao L M, Li Z L, et al. Element geochemistry[M]. Beijing: Science Press, 1984.
[24] Thompson J F, Sillitoe R H, Baker T, et al. Intrusion-related gold deposits associated with tungsten-tin provinces[J]. Mineralium Deposita, 1999, 34(4):323-334.
doi: 10.1007/s001260050207
[25] 刘建明, 周渝峰, 付仁平, 等. 杂多酸络合物及其与热液成矿元素组合的关系[J]. 矿物岩石, 1994, 4(4):76-84.
[25] Liu J M, Zhou Y F, Fu R P, et al. Heteropolyacide complexes in relationship to hydrothermal paragenesis of ore elements[J]. Journal of Mineralogy and Petrology, 1994, 4(4):76-84.
[26] 刘家军, 刘光智, 廖延福, 等. 甘肃寨上金矿床中白钨矿矿体的发现及其特征[J]. 中国地质, 2008, 35(6):1113-1120.
[26] Liu J J, Liu G Z, Liao Y F, et al. Discovery and significance of scheelite orebodies in the Zhaishang gold deposit,southern Gansu[J]. Geology in China, 2008, 35(6):1113-1120.
[27] Grigoryeva T A, Sukneva L S. Effects of sulfur and of antimony and arsenic sulfide on the solubility of gold[J]. Geochimica et Cosmochimica, 1981, 18:153-158.
[28] Akhmedzhanova G M, Nekrasov I Y, Tikhomirova V I, et al. Solubility of gold in sulfide-arsenide solutions at 200-300 ℃[J]. Earth Science Sections, 1998, 300(3):189-191.
[29] 丁清峰, 王冠, 孙丰月, 等. 青海省曲麻莱县大场金矿床成矿流体演化:来自流体包裹体研究和毒砂地温计的证据[J]. 岩石学报, 2020, 26(12):3709-3719.
[29] Ding Q F, Wang G, Sun F Y, et al. Ore-forming fluid evolution of Dachang gold deposit in Qumalai County,Qinghai Province:Evidence from fluid inclusion study and arsenopyrite geothermometer[J]. Acta Petrologica Sinica, 2010, 26(12):3709-3719.
[1] 陈伟, 谭友, 曹正端, 廖志权, 张宁发, 傅海晖. 构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例[J]. 物探与化探, 2023, 47(4): 892-905.
[2] 程培生, 汪曙潮, 李壮, 顾大年, 张建明, 杜东旭. 安徽西湾铅锌矿含矿层位顶部原生晕特征[J]. 物探与化探, 2022, 46(6): 1381-1387.
[3] 李欢, 黄勇, 张沁瑞, 贾三满, 徐国志, 冶北北, 韩冰. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2): 502-516.
[4] 袁兆宪, 侯振广, 任志栋, 刘永乐, 张大明, 张建平. 金属元素形成原生晕能力定量评价——以青海省扎家同哪金矿为例[J]. 物探与化探, 2021, 45(2): 292-300.
[5] 耿国帅, 杨帆, 郭建娜. 变换后数据的因子分区标准化在东昆仑东段地球化学异常圈定中的应用[J]. 物探与化探, 2020, 44(1): 112-121.
[6] 龚晶晶, 杨剑洲, 马生明, 苏磊. 利用因子分析和分形分析识别内蒙古黑鹰山地区矿致地球化学异常[J]. 物探与化探, 2020, 44(1): 122-131.
[7] 李春亮, 张炜. 甘肃省祁连山西段地球化学分区及其特征[J]. 物探与化探, 2018, 42(2): 312-315.
[8] 张秀芝, 王俊达, 张城钢, 谢晓阳. 上黄旗—乌龙沟断裂带走马驿—大河南区段地球化学异常解析[J]. 物探与化探, 2018, 42(1): 14-20.
[9] 李鹏宇, 石文杰, 魏俊浩, 熊乐, 周红智, 尤静静. 青海省兴海县某地区铜多金属找矿潜力评价——基于1:5万土壤化探数据处理与异常信息提取[J]. 物探与化探, 2017, 41(2): 194-202.
[10] 章贤能, 寇尚文, 刘艾华. 安徽宁国东山坞地区土壤地球化学特征与评价[J]. 物探与化探, 2017, 41(1): 71-78.
[11] 梁鹏飞, 刘洋, 曾毅夫, 向宇, 曾杰. 云南金平燕子岩铅锌异常特征及资源量预测[J]. 物探与化探, 2017, 41(1): 65-70.
[12] 缪宇, 郭光华, 王建平, 张七道, 张锡昌, 杨飞, 韩钥. 云南绿春县杨家寨黄竹林地区金及多金属地球化学异常评价及找矿模型[J]. 物探与化探, 2016, 40(6): 1063-1069.
[13] 刘银飞, 孙彬彬, 贺灵, 曾道明, 刘占元, 周国华. 福建龙海土壤垂向剖面元素分布特征[J]. 物探与化探, 2016, 40(4): 713-721.
[14] 唐名鹰, 彭永和, 朱德全, 李书凯, 田孟. 青海赛坝沟金矿床Ⅳ-3号矿体原生晕特征与深部预测[J]. 物探与化探, 2016, 40(3): 475-481.
[15] 谢小占. 广东怀集高凤矿区地球化学特征[J]. 物探与化探, 2016, 40(2): 303-309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com