Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (3): 656-664    DOI: 10.11720/wtyht.2020.0060
     中国地质学会勘探地球物理专委会2019年会优秀论文 本期目录 | 过刊浏览 | 高级检索 |
大地电磁测深法在滨北西部斜坡带油气地质调查评价中的应用
彭炎1,2,3, 张小博1,2,3(), 张健4, 张鹏辉1,2, 袁永真1,2,3, 姜春香1,2,3
1. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2. 国家现代地质勘查工程技术研究中心,河北 廊坊 065000
3. 自然资源部 地球物理电磁法探测技术重点实验室,河北 廊坊 065000
4. 中国地质调查局 沈阳地质调查中心,辽宁 沈阳 110034
The application of magnetotelluric sounding method to oil-gas geological survey and evaluation of the western slope area of Binbei
Yan PENG1,2,3, Xiao-Bo ZHANG1,2,3(), Jian ZHANG4, Peng-Hui ZHANG1,2, Yong-Zhen YUAN1,2,3, Chun-Xiang JIANG1,2,3
1. Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
2. National Center for Geological Exploration Technology, Langfang 065000, China
3. Electromagnetic Detection Technology Key Laboratory of Natural Resources, Langfang 065000, China
4. Shenyang Center of Geological Survey,CGS,Shenyang 110034,China
全文: PDF(5125 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

资料显示松辽盆地的石炭—二叠系具有较大的生烃潜力和油气资源前景,有望成为未来松辽盆地深层油气勘探突破的重点层系,但是,石炭—二叠系地层的分布无论在方法技术和认识方面仍存在较大的不确定性。因此,本文围绕沈阳地质调查中心位于西部斜坡带的黑富地1井部署了一条大地电磁测深剖面,通过野外试验优选了采集参数,获得了高质量的原始数据;通过数据分析、利用共轭梯度法反演获得了电性结构剖面,并结合钻井、地震等资料开展综合分析。结果表明,黑富地1井附近发育两条横向稳定展布的低阻层,其中第一套低阻层埋深在300~800 m之间,是白垩系地层高泥质含量地层的电性响应,第二套地层位于T5界面之下1.5~2.5 km之间,横向起伏幅度较小,结合钻井资料推测反映二叠系林西组泥岩层;并结合深层气体的主控因素,预测了油气有利部位。这些认识为松辽盆地石炭—二叠系油气资源的评价提供了可靠的地球物理依据和技术储备。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭炎
张小博
张健
张鹏辉
袁永真
姜春香
关键词 大地电磁测深油气资源评价滨北地区西部斜坡带林西组    
Abstract

In recent years, more and more data show that the Songliao Basin has a large hydrocarbon generation potential and oil-gas resource prospect, and is expected to become the key stratigraphic horizon for the deep oil-gas exploration breakthrough in the Songliao Basin in the future. However, The distribution of the Carboniferous-Permian strata still has large uncertainties in terms of method, technology and understanding. In view of such a situation, the authors deployed a magnetotelluric sounding profile around the Heifudi- drill hole in the western slope zone of the Shenyang Geological Survey Center. The field parameters were used to optimize the acquisition parameters and thus high quality raw data were obtained. Through data analysis and conjugate gradient method, the electrical structural profiles were obtained and, in combination with drilling, seismic and other data, a comprehensive analysis was conducted. The results show that two horizontally stable low-resistance layers are developed near Heifudi-1 drill hole, and the first set of low-resistance layers is buried between 300 to 800 meters, which is the electrical property of the Cretaceous strata with high muddy content. In response, the second set of strata is located between 1.5 to 2.5km below the T5-Interface, and the lateral undulation is small. Combined with the drilling data, it is considered to reflect the mudstone strata of the Permian Linxi Formation. Combined with the main controlling factors of deep gas, the favorable zone of oil-gas has been predicted. These insights provide a reliable geophysical basis and technical reserve for the evaluation of the Carboniferous-Permian hydrocarbon resources in the Songliao Basin.

Key wordsmagnetotelluric sounding    oil and gas resources evaluation    Binbei area    western slope area    Linxi Formation
收稿日期: 2020-01-19      出版日期: 2020-06-24
:  P631  
基金资助:中国地质调查局地质调查项目(DD20190030);中国地质调查局地质调查项目(DD20190032)
通讯作者: 张小博
作者简介: 彭炎(1990-),男,工程师,主要从事地球物理勘探技术研究工作。Email: pengyan@igge.cn
引用本文:   
彭炎, 张小博, 张健, 张鹏辉, 袁永真, 姜春香. 大地电磁测深法在滨北西部斜坡带油气地质调查评价中的应用[J]. 物探与化探, 2020, 44(3): 656-664.
Yan PENG, Xiao-Bo ZHANG, Jian ZHANG, Peng-Hui ZHANG, Yong-Zhen YUAN, Chun-Xiang JIANG. The application of magnetotelluric sounding method to oil-gas geological survey and evaluation of the western slope area of Binbei. Geophysical and Geochemical Exploration, 2020, 44(3): 656-664.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0060      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I3/656
Fig.1  西部斜坡区构造图(a),T5界面等值线图与测线部署(b)
Fig.2  区域地层电阻率特征(a)及黑富地1井MT井旁侧深曲线与电阻率测井曲线对比(b)
地层 地层代号 测井电阻率
/(Ω·m)
露头电阻率
/(Ω·m)
白垩系 K 3.9~212
二叠系林西组 P3l 9
石炭系 C 478~2691
Table 1  研究区物性参数统计
Fig.3  同一测点不同时长的原始视电阻率和相位曲线对比
Fig.4  较差的原始视电阻率曲线(a)及经过互参考处理后的视电阻率曲线(b)
Fig.5  A5测点原始视电阻率曲线和相位曲线
Fig.6  二维偏离度剖面
Fig.7  单测点—多频点统计的1~0.01 Hz频点电性主轴方向(a),多测点—多频点统计1~0.01 Hz频段电性主轴方向(b)
Fig.8  RMS收敛曲线
Fig.9  二维反演拟合断面(上)与实测数据(下)对比
Fig.10  二维电性结构剖面及初步解释结果
[1] 夏训银, 王建新, 刘俊昌, 等. 大地电磁测深在南盘江北部地区油气勘探中的应用[J]. 物探与化探, 2012,36(2):174-179.
[1] Xia X Y, Wang J X, Liu J C, et al. The application of magnetotelluric sounding to lithofacies division in oil and gas explo ration of northern nanpangjiang area[J]. Geophysical and Geochemical Exploration, 2012,36(2):174-179.
[2] 李爱勇, 柳建新, 朱春生, 等. 大地电磁测深在桂中坳陷油气勘探中的应用[J]. 物探与化探, 2012,36(1):8-12.
[2] Li A Y, Liu J X, Zhu C S, et al. The application of magnetotelluric sounding to oil and gas exploration in central Guangxi depresslon[J]. Geophysical and Geochemical Exploration, 2012,36(1):8-12.
[3] 方慧, 钟清, 陈树旺. 内蒙古突泉盆地双低阻层的发现及其地质意义[J]. 地质通报, 2013,32(8):1253-1259.
[3] Fang H, Zhong Q, Chen S W. The discovery of two conductive layers in Tuquanbasin,InnerMongolia,and its geological significance[J]. Geological Bulletin of China, 2013,32(8):1253-1259.
[4] 纪贤伟. 三维地震资料在松辽盆地北部西部斜坡的应用[J]. 非常规油气, 2019,6(5):23-31.
[4] Ji X W. Application of 3D seismic data to the western slope of northern Songliao Basin[J]. Unconventional Oil & Gas, 2019,6(5):23-31.
[5] 朱志立, 程宏岗, 张敏, 等. 松辽盆地上二叠统林西组烃源岩地球化学特征[J]. 非常规油气, 2017,4(4):55-63.
[5] Zhu Z L, Cheng H G, Zhang M, et al. The geochemical characteristics of source rocks of upper Permian Linxi Formation in Songliao Basin[J]. Unconventional Oil & Gas, 2017,4(4):55-63.
[6] 张健, 卞雄飞, 陈树旺, 等. 大兴安岭中南部上二叠统林西组页岩气资源前景[J]. 地质通报, 2013,32(8):1297-1306.
[6] Zhang J, Bian X F, Chen S W, et al. Shale gas resources prospect of late Permian Linxi Formation in the middle-southern part of the Da Hinggan Mountains[J]. Geological Bulletin of China, 2013,32(8):1297-1306.
[7] 苏飞, 卞雄飞, 王青海, 等. 内蒙古扎鲁特地区鲁D2井林西组烃源岩有机地球化学特征[J]. 地质通报, 2013,32(8):1307-1314.
[7] Su F, Bian X F, Wang Q H, et al. The evaluation of hydrocarbon generation potential of source rocks in Linxi Formation of Zhalute basin, Inner Mongolia[J]. Geological Bulletin of China, 2013,32(8):1307-1314.
[8] 刘永江, 张兴洲, 金巍, 等. 东北地区晚古生代区域构造演化[J]. 中国地质, 2010,37(4):943-951.
[8] Liu Y J, Zhang X Z, Jin W, et al. Late Paleozoic tectonic evolution in Northeast China[J]. Geology in China, 2010,37(4):943-951.
[9] 王成文, 孙跃武, 李宁, 等. 东北地区晚古生代地层分布规律[J]. 地层学杂志, 2009,33(1):56-61.
[9] Wang C W, Sun Y W, Li N, et al. On the distribution of Late Palaeozoic strata in northeast China[J]. Journal of Stratigraphy, 2009,33(1):56-61.
[10] 张兴洲, 周建波, 迟效国, 等. 东北地区晚古生代构造—沉积特征与油气资源[J]. 吉林大学学报:地球科学版, 2008(5):719-725.
[10] Zhang X Z, Zhou J B, Chi X G, et al. Late Paleozoic Tectonic-Sedimentation and petroleum resources in northeastern China[J]. Journal of Jilin University:Earth Science Edition, 2008(5):719-725.
[11] 王成文, 金巍, 张兴洲, 等. 东北及邻区晚古生代大地构造属性新认识[J]. 地层学杂志, 2008(2):119-136.
[11] Wang C W, Jin W, Zhang X Z, et al. New understanding of the Late Paleozoic tectonics in northeastern China and adjacent areas[J]. Journal of Stratigraphy, 2008(2):119-136.
[12] 张兴洲, 郭冶, 曾振, 等. 东北地区中—新生代盆地群形成演化的动力学背景[J]. 地学前缘, 2015,22(3):88-98.
[12] Zhang X Z, Guo Y, Zeng Z, et al. Dynamic evolution of the Mesozoic-Cenozoic basins in the northeastern China[J]. Earth Science Frontiers, 2015,22(3):88-98.
[13] 张健, 卞雄飞, 陈树旺, 等. 松辽盆地西北部富裕地区黑富地1井二叠系烃源岩地球化学特征[J]. 地质论评, 2019,65(S1):199-200.
[13] Zhang J, Bian X F, Cheng S W, et al. Geochemical characteristics of Permian hydrocarbon source rocks of HFD1 well in Fuyu area, northwest of Songliao basin[J]. Geological Review, 2019,65(S1):199-200.
[14] 蔡军涛, 陈小斌. 大地电磁资料精细处理和二维反演解释技术研究(二)——反演数据极化模式选择[J]. 地球物理学报, 2010,53(11):2703-2714.
[14] Cai J T, Chen X B. Refined techniques for data processing and two-dimensional inversion in magnetotelluric Ⅱ:Which data polarization mode should be used in 2D inversion[J]. Chinese Journal of Geophysics, 2010,53(11):2703-2714.
[15] 陈小斌, 郭春玲. 大地电磁资料精细处理和二维反演解释技术研究(五)——利用阻抗张量成像识别大地线性构造[J]. 地球物理学报, 2017,60(2):766-777.
[15] Chen X B, Guo C L. Refined techniques for data processing and two-dimensional inversion in magnetotelluric(Ⅴ):Detecting the linear structures of the Earth by impedance tensor imaging[J]. Chinese Journal of Geophysics, 2017,60(2):766-777.
[16] 陈小斌, 蔡军涛, 王立凤, 等. 大地电磁资料精细处理和二维反演解释技术研究(四)——阻抗张量分解的多测点-多频点统计成像分析[J]. 地球物理学报, 2014,57(6):1946-1957.
[16] Chen X B, Cai J T, Wang L F, et al. Refined techniques for magnetotelluric data processing and two-dimensional inversion(IV):Statistical image method based on multi-site,multi-frequency tensor decomposition[J]. Chinese Journal of Geophysics, 2014,57(6):1946-1957.
[17] McNeice G W, Jones A G. Multisite, multifrequency tensor decomposition of magnetotelluric data[J]. Geophysics, 2001,66(1):158-172.
[18] 叶涛, 陈小斌, 严良俊. 大地电磁资料精细处理和二维反演解释技术研究(三)——构建二维反演初始模型的印模法[J]. 地球物理学报, 2013,56(10):3596-3606.
[18] Ye T, Chen X B, Yan J L. Refined techniques for data processing and two-dimensional inversion in magnetotelluric(Ⅲ):using the Impressing Method to construct starting model of 2D magnetotelluric inversion[J]. Chinese Journal of Geophysics, 2013,56(10):3596-3606.
[19] Wannamaker P E, Hohmann G W, Ward S H, et al. Magnetotelluric responses of three-dimensional bodies in layered earths[J]. Geophysics, 1984,49(9):1517-1533.
[20] Berdichevsky M N, Dmitriev V I, Pozdnjakova E E, et al. On two-dimensional interpretation of magnetotelluric soundings[J]. Geophysical Journal International, 1998,133(3):585-606.
[21] 董浩, 魏文博, 叶高峰, 等. 大地电磁测深二维反演方法求解复杂电性结构问题的适应性研究[J]. 地球物理学报, 2012,55(12):4003-4014.
[21] Dong H, Wei W B, Ye G F, et al. Study of two dimensional magnetotelluric inversions of complex three dimensional structures[J]. Chinese Journal of Geophysics, 2012,55(12):4003-4014.
[22] 张鹏辉, 张小博, 袁永真, 等. 辽河外围北部秀水盆地大地电磁测深研究[J]. 物探与化探, 2019,43(5):986-996.
[22] Zhang P H, Zhang X B, Yuan Y Z, et al. A study of magnetotelluric sounding of Xiushui Basin in the northern periphery of Liaohe[J]. Geophysical and Geochemical Exploration, 2019,43(5):986-996.
[23] 张鹏辉, 钟清, 方慧, 等. 突泉盆地南部结构及含油气远景——基于大地电磁测深结果[J]. 物探与化探, 2015,39(6):1284-1291.
doi: 10.11720/wtyht.2015.6.31
[23] Zhang P H, Zhong Q, Fang H, et al. A study of the structure of southern Tuquan Basin and oil-gas prospect based on magnetotelluric sounding[J]. Geophysical and Geochemical Exploration, 2015,39(6):1284-1291.
doi: 10.11720/wtyht.2015.6.31
[24] 方慧, 钟清, 陈树旺. 内蒙古突泉盆地双低阻层的发现及其地质意义[J]. 地质通报, 2013,32(8):1253-1259.
[24] Fang H, Zhong Q, Chen S W. The discovery of two conductive layers in Tuquan basin,Inner Mongolia,and its geological significance[J]. Geological Bulletin of China, 2013,32(8):1253-1259.
[1] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[2] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[3] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
[4] 刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
[5] 刘俊峰, 程云涛, 邓志强, 周芳春, 曹创华, 刘翔, 曾美强, 李杰, 黄志彪, 陈虎. CSAMT与AMT数据“拼接”处理——以湖南仁里铌钽矿床7号剖面为例[J]. 物探与化探, 2021, 45(1): 68-75.
[6] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[7] 张伟, 胡蕾, 张钊搏. LEMI-417型地球深部电磁场观测系统的数据格式解析[J]. 物探与化探, 2020, 44(4): 810-815.
[8] 吕琴音, 张小博, 仇根根, 王刚. 大地电磁测深首枝频点统计求平均法在连片静位移区的校正实验研究[J]. 物探与化探, 2020, 44(3): 677-684.
[9] 朱自串, 周丹, 李德文, 余润龙. 音频大地电磁测深法在老挝万象盆地钾镁盐矿产勘探中的运用效果[J]. 物探与化探, 2019, 43(6): 1268-1276.
[10] 张鹏辉, 张小博, 袁永真, 方慧, 刘建勋, 姜春香. 辽河外围北部秀水盆地大地电磁测深研究[J]. 物探与化探, 2019, 43(5): 986-996.
[11] 王长城. 大地电磁测深法用于快速评价新生代盆地盐类矿床成矿远景区的初步试验[J]. 物探与化探, 2019, 43(5): 997-1002.
[12] 朱怀亮, 胥博文, 刘志龙, 石峰, 辛玉齐, 曹学刚, 程国强. 大地电磁测深法在银川盆地地热资源调查评价中的应用[J]. 物探与化探, 2019, 43(4): 718-725.
[13] 袁永真, 张鹏辉, 张小博. 大兴安岭中南段上古生界烃源岩地层的岩石物性特征[J]. 物探与化探, 2019, 43(4): 778-782.
[14] 田巍, 李旭兵, 王保忠. 大地电磁测深在湘东南坳陷页岩气勘探中的应用[J]. 物探与化探, 2019, 43(2): 281-289.
[15] 孙海川, 刘永亮, 邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探与化探, 2019, 43(2): 290-297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com