Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (1): 17-27    DOI: 10.11720/wtyht.2019.1105
     地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
龙门山断裂带及其邻区电性结构特征
徐玳笠1, 唐宝山2, 魏文博3
1. 湖北省地质调查院, 湖北 武汉 430034
2. 湖北省地质局地球物理勘探大队, 湖北 武汉 430056
3. 中国地质大学(北京) 地球物理与信息技术学院, 北京 100083
Electrical structure characteristics of Longmen fault zone and its adjacent areas
Dai-Li XU1, Bao-Shan TANG2, Wen-Bo WEI3
1. Hubei Geological Survey, Wuhan 430034, China
2. Geophysical Exploration Party of Hubei Geological Bureau, Wuhan 430056, China
3. China University of Geosciences, Beijing 100083, China
全文: PDF(10176 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

龙门山断裂带是中国大陆地壳中著名的造山带和地震带。为了研究龙门山逆冲推覆构造的深部结构及其与青藏高原物质东向逃逸之间的关系,布置了跨越西秦岭造山带、松潘—甘孜褶皱带、四川盆地的4条大地电磁测深剖面,每条剖面有宽频大地电磁测深点20个,共计80个宽频大地电磁测深数据以及16个长周期数据;进行了二维、三维反演,得到了电性模型。研究结果显示:在30 km以浅,龙门山断裂带基本上与电性梯度变化带相重合,说明龙门山断裂带是深达地壳中部的深大断裂带;松潘-—甘孜褶皱带在20 km以浅呈现以高阻为主的较为复杂的电性结构分布特征,这与其复杂的地表构造有关;在20 km以深,接近龙门山断裂带附近呈现为高阻,推测此高阻可能是对四川盆地的基底的反映,表明松潘—甘孜褶皱带以龙门山断裂为界推覆至四川盆地之上;推断青藏高原物质东向逃逸,有可能从松潘—甘孜褶皱带深部沿礼县—宕昌一带向东北方向逃逸,这一运移主要是发生在18 km以下、30 km以上的中下地壳范围内,物质逃逸的主要形式是部分熔融。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐玳笠
唐宝山
魏文博
关键词 大地电磁测深龙门山断裂带青藏高原物质逃逸壳幔电性结构深部动力过程    
Abstract

Longmen fault zone is one of the most famous orogenic belts and seismic zones in the continental crust of China. In order to study the deep structure of Longmen thrust nappe belt and its relationship with the eastward escaping of material in the Tibetan Plateau, the authors completed four magnetotellurics profiles across the West Qinling orogenic belt, Songpan-Garze fold belt and the Sichuan basin, which included 80 broad-band magnetotellurics stations and 16 long-period stations. The electrical model diagram was obtained through two-dimensional and three-dimensional inversion. The model indicates that the Longmen Mountain fault zone is basically coincided with the electrical gradient zone in the depth less than 30 km. It means that the Longmen fault zone is a fault zone which is deep in the middle of the crust. Above the depth of 20 km, the distribution characteristics of the electrical structure in Songpan-Garze fold belt are complex and of low-conductivity, which is related to the complex surface structure. Below 20 km, the low conductivity is similar to that of the Longmen fault zone. It is inferred that high resistivity may be a reflection of the basement of the Sichuan basin, indicating that the Songpan-Garze fold belt pushed over Sichuan basin bounded by Longmen fault zone. It is concluded that the material migration under the Tibetan Plateau happened under the Songpan-Garze fold belt. The material escaped northeastward from Lixian to Dangchang, at the depth of 18km to 30km with the partial-melting.

Key wordsmagnetotellurics    Longmen fault zone    material migration under the Tibetan Plateau    electrical structure characteristics of crust and mantle    deep dynamic process
收稿日期: 2018-03-13      出版日期: 2019-02-20
:  P631  
基金资助:中国地质调查局项目“中央造山带与南北构造带交汇区地壳深部地质调查”(1212011220261)
作者简介: 徐玳笠(1986-),男,湖北人,高级工程师,博士研究生,地球探测与信息技术专业,主要从事矿产资源地球物理勘探研究工作。
引用本文:   
徐玳笠, 唐宝山, 魏文博. 龙门山断裂带及其邻区电性结构特征[J]. 物探与化探, 2019, 43(1): 17-27.
Dai-Li XU, Bao-Shan TANG, Wen-Bo WEI. Electrical structure characteristics of Longmen fault zone and its adjacent areas. Geophysical and Geochemical Exploration, 2019, 43(1): 17-27.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1105      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I1/17
Fig.1  研究区大地电磁测深数据点位示意
红色圆点为宽频大地电磁测深点, 蓝色圆点为长周期大地电磁测深点
Fig.2  宽频及长周期大地电磁测深仪
Fig.3  研究区内不同区块视电阻率及相位曲线
Fig.4  相位张量原理示意
Fig.5  研究区相位张量分析结果
Fig.6  研究区G-B分解玫瑰
Fig.7  不同剖面实测与二维模型理论计算的TM极化模式的视电阻率和阻抗相位对比
Fig.8  不同经线二维反演电性结构模型
Fig.9  三维反演过程中rms拟合差随迭代次数变化
Fig.10  研究区三维反演不同深度切片
Fig.11  低阻体C1的移动方向示意
构造单元 地表热流值
/(mW·m-2)
深部热流值
/(mW·m-2)
莫霍面深度
/km
莫霍面温度
/℃
岩石圈厚度
/km
岩石圈温度
/℃
鄂尔多斯南缘 57.48 34.52 37 628 85 1382
北秦岭 61.44 29.69 39 668 92 1400
礼县—柞水 64.97 31.43 40 725 85 1381
南秦岭 74.07 44.29 41 901 61 1319
佛坪穹窿 85 52.64 37 1007 49 1286
四川盆地北缘 55.53 26.08 42 592 112 1451
Table 1  研究区岩石圈热结构参数统计
构造单元 附加热流值
/(mW·m-2)
壳内熔融层
深度/km 厚度/km
礼县—柞水 9.41 24 6.2
南秦岭 18.54 20 4.3
佛坪穹窿 29.47 17 4.5
渭河地堑 13.74 14 6.1
Table 2  研究区壳内局部熔融层分布情况
[1] 刘树根, 李智武, 曹俊兴 , 等. 龙门山陆内复合造山带的四维结构构造特征[J]. 地质科学, 2009,44(4):1151-1180.
[1] Liu S G, Li Z W, Cao J X , et al. 4-D textural and structural characteristics of Longm en intracontinental composite orogenic belt,southwest China[J]. Chinese Journal of Geology, 2009,44(4):1151-1180.
[2] Burchfiel B C, Quidong D, Molnar P , et al. Intracrustal detachment within zones of continental deformation[J]. Geology, 1989,17(8):748-752.
doi: 10.1130/0091-7613(1989)017<0448:IDWZOC>2.3.CO;2
[3] Royden L H, Burchfiel B C, King R W , et al. Surface deformation and lower crustal flow in eastern tibet[J]. Science, 1997,276(5313):788-790.
doi: 10.1126/science.276.5313.788 pmid: 9115202
[4] Tapponnier P, Xu Z Q, Roger F , et al. Oblique stepwise rise and growth of the tibet plateau[J]. Science, 2001,294(5547):1671-1677.
doi: 10.1126/science.105978 pmid: 11721044
[5] Burchfiel B C, Royden L H, Hilst R D V D , et al . A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China[J]. Gsa Today, 2008,18(18):4-11.
[6] 张振宇, 王绪本, 方慧 . 龙门山构造带中段大地电磁测深研究[J]. 物探与化探, 2012,26(3):377-381.
doi: 10.11720/wtyht.2012.3.10
[6] Zhang Z Y, Wang X B, Fang H . A study of magnetotelluric sounding in the middle segment of the Longmensham structural belt[J]. Geophysical and Geochemical Exploration, 2012,26(3):377-381.
[7] Zhao G, Unsworth M J, Zhan Y , et al. Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data[J]. Geology, 2012,40(12):1139-1142.
doi: 10.1130/g33703.1
[8] 王绪本, 朱迎堂, 赵锡奎 , 等. 青藏高原东缘龙门山逆冲构造深部电性结构特征[J]. 地球物理学报, 2009,52(2):564-571.
doi:
[8] Wang X B, Zhu Y T, Zhao X K , et al. Deep conductivity characteristics of the Longmen Shan, eastern Qinghai-Tibet plateau[J]. Chines Journal of Geophysics, 2009,52(2):564-571.
[9] 楼海, 王椿镛, 姚志祥 , 等. 龙门山断裂带深部构造和物性分布的分段特征[J]. 地学前缘, 2010,17(5):128-141.
doi: 10.3969/j.issn.1003-286X.2014.09.023
[9] Lou H, Wang C Y, Yao Z X , et al. Subsection feature of the deep structure and material properties of Longmenshan fault zone[J]. Earth Science Frontiers, 2010,17(5):128-141.
[10] Gamble T D, Goubau W M, Clarke J . Magnetotellurics with a remote magnetic reference[J]. Geophysics, 1979,44(1):53-68.
doi: 10.1190/1.1440923
[11] Egbert G D, Booker J R . Robust estimation of geomagnetic transfer functions[J]. Geophysical Journal International, 1986,87(1):173-194.
doi: 10.1111/j.1365-246X.1986.tb04552.x
[12] 金胜, 魏文博, 汪硕 , 等. 青藏高原地壳高导层的成因及动力学意义探讨——大地电磁测深提供的证据[J]. 地球物理学报, 2010,53(10):2376-2385.
doi: 10.3969/j.issn.0001-5733.2010.10.011
[12] Jin S, Wei W B, Wang S , et al. Discussion of the foemation and dynamic signification of the high conductive layer in Tibetan crust[J]. Chines Journal of Geophysics, 2010,53(10):2376-2385.
[13] 魏文博, 金胜, 叶高峰 , 等. 藏北高原地壳及上地幔导电性结构——超宽频带大地电磁测深研究结果[J]. 地球物理学报, 2006,49(4):1215-1225.
doi: 10.3321/j.issn:0001-5733.2006.04.038
[13] Wei W B, Jin S, Ye G F , et al. Conductivity structure and rheological property of lithosphere in nouthern Tibet inferred from super-broadband magmetotulleric sounding[J]. Chines journal of geophysics, 2006,49(4):1215-1225.
[14] 魏文博, 金胜, 叶高峰 , 等. 藏南岩石圈导电性结构与流变性——超宽频带大地电磁测深研究结果[J]. 中国科学D辑:地球科学, 2009,39(11):1591-1606.
[14] Wei W B, Jin S, Ye G F , et al. Conductivity structure and rheological property of lithosphere in southern Tibet inferred from super-broadband magmetotulleric sounding[J]. Sci China Ser D-Earth Sci, 2009,39(11):1591-1606.
[15] 魏文博, 陈乐寿, 谭捍东 , 等. 西藏中、南部壳内高导体与热结构特点——INDEPTH-MT提供的证据[J]. 现代地质, 1997,11(3):387-392.
[15] Wei W B, Chen L S, Tan H D , et al. Features of thermal structure and highly conductive bodies in middle crust beneath central and southern Tibet: according to INDEPTH-MT results[J]. Journal of Graduate School, 1997,11(3):387-392.
[16] 魏文博 . 我国大地电磁测深新进展及瞻望[J]. 地球物理学进展, 2002,17(2):245-254.
doi: 10.3969/j.issn.1004-2903.2002.02.009
[16] Wei W B . New advance and prospect of magnetotelluric sounding (MT) in China[J]. Progress in Geophysics, 2002,17(2):245-254.
[17] 魏文博, 金胜, 叶高峰 , 等. 中国大陆岩石圈导电性结构研究——大陆电磁参数“标准网”实验(SinoProbe-01)[J]. 地质学报, 2010,84(6):788-800.
[17] Wei W B, Jin S, Ye G F , et al. On the conductive structure of Chinese continental lithosphere-experiment on "standard monitoring network" of continental EM parameters[J]. Acta Geologica sinica, 2010,84(6):788-800.
[18] Groom R W, Bailey R C . Decomposition of magnetotelluric impedance tensors in the presence of local three-Dimensional galvanic distortion[J]. Journal of Geophysical Research, 1989,94(B2):1913-1925.
doi: 10.1029/JB094iB02p01913
[19] McNeice G W, Jones A G . Multisite, multifrequency tensor decomposition of magnetotelluric data[J]. Geophysics, 2001,66(1):158-173.
doi: 10.1190/1.1444891
[20] Moorkamp M . Comment on ‘The magnetotelluric phase tensor’by T. Grant Caldwell, Hugh M. Bibby and Colin Brown[J]. Geophysical Journal International, 2007,171(2):565-566.
doi: 10.1111/j.1365-246X.2007.03490.x
[21] 蔡军涛, 陈小斌 . 大地电磁资料精细处理和二维反演解释技术研究(二)——反演数据极化模式选择[J]. 地球物理学报, 2010,53(11):2703-2714.
doi: 10.3969/j.issn.0001-5733.2010.11.018
[21] Cai J T, Chen X B. Refined techniques for data processing and two一dimensional inversion in magnetotelluric Ⅱ: Which data polarization mode should be used in 2D inversion[J]. Chinese journal of Geophysics, 2010,53(11):2703-2714.
[22] 张乐天, 金胜, 魏文博 , 等. 青藏高原东缘及四川盆地的壳幔导电性结构研究[J]. 地球物理学报, 2012,55(12):4126-4137.
doi: 10.6038/j.issn.0001-5733.2012.12.025
[22] Zhang L T, Jin S, Wei W B , et al. Electrical structure of crust and upper mantle beneath the eastern margin of the Tibetan plateau and the Sichuan basin[J]. Chinese journal of Geophysics, 2012,55(12):4126-4137.
[23] 许志琴, 李化启, 侯立炜 , 等. 青藏高原东缘龙门 锦屏造山带的崛起——大型拆离断层和挤出机制 [J]. 地质通报, 2007,26(10):1262-1276.
doi: 10.3969/j.issn.1671-2552.2007.10.005
[23] Xu Z Q, Li H Q, Hou L W , et al. Uplift of the Longmen-Jinping orogenic belt along the eastern margin of the Qinghai-Tibet plateau:Large-scale detachment faulting and extrusion mechanism[J]. Geological Bulletin of China, 2007,26(10):1262-1276.
[24] 许至琴, 卢一伦, 汤耀庆 , 等. 东秦岭复合山链的形成——变形、演化及板块动力学[M]. 北京: 中国环境科学出版社, 1988.
[24] Xu Z Q, Lu Y L, Tang Y Q , et al. Formation, deformation, evolution and plate dynamics of the eastern Qinling composite mountain chain[M]. Beijing: China Environmental Science Press, 1988.
[25] 许志琴, 王勤, 曾令森 , 等. 高喜马拉雅的三维挤出模式[J]. 中国地质, 2013,40(3):671-680.
doi: 10.3969/j.issn.1000-3657.2013.03.002
[25] Xu Z Q, Wang Q, Zeng L S , et al. Three-dimensional extrusion model of the Great Himalaya slice[J]. Geology in China, 2013,40(3):671-680.
[26] 许志琴, 杨经绥, 李海兵 , 等. 中央造山带早古生代地体构架与高压/超高压变质带的形成[J]. 地质学报, 2006,80(12):1793-1806.
doi: 10.3321/j.issn:0001-5717.2006.12.002
[26] Xu Z Q, Yang J S, Li H B , et al. The early palaeozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the central orogenic belt (COB)[J]. Acta Geologica Sinica, 2006,80(12):1793-1806.
[27] 许志琴, 杨经绥, 李海兵 , 等. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 2006,33(2):221-238.
doi: 10.3969/j.issn.1000-3657.2006.02.001
[27] Xu Z Q, Yang J S, Li H B , et al. The Qinghai-Tibet plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau[J]. Geology in China, 2006,33(2):221-238.
[28] Clark M K, Royden L H . Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000,28(8):703-706.
doi: 10.1130/0091-7613(2000)28&lt;703:TOBTEM&gt;2.0.CO;2
[29] 孟小红, 石磊, 郭良辉 , 等. 青藏高原东北缘重力异常多尺度横向构造分析[J]. 地球物理学报, 2012,55(12):3933-3941.
doi: 10.6038/j.issn.0001-5733.2012.12.006
[29] Meng X H, Shi L, Guo L H , et al. Multi-scale analyses of transverse structures based on gravity anomalies in the northern margin of the Tibetan plateau[J]. Chinese journal of Geophysics, 2012,55(12):3933-3941.
[30] 喻学惠, 莫宣学, 赵志丹 , 等. 西秦岭新生代双峰式火山作用及南北构造带成因初探[J]. 岩石学报, 2011,27(7):2195-2202.
[30] Yu X H, Mo X X, Zhao Z D , et al. Cenozoic bimodal volcanic rocks of the west Qinling: Implication for the genesis and nature of the rifting of north-south tectonic belt[J]. Acta Petrologica Sinica, 2011,27(7):2195-2202.
[31] Bahr K . Geological noise in magnetotelluric data: A classification of distortion types[J]. Physics of the Earth & Planetary Interiors, 1991,66(1):24-38.
doi: 10.1016/0031-9201(91)90101-M
[32] Cagniard L . Basic theory of the magneto-telluric method of geophysical prospecting[J]. Geophysics, 1953,18(3):605-635.
doi: 10.1190/1.1437915
[33] Caldwell T G, Bibby H M, Brown C . The magnetotelluric phase tensor[J]. Geophysical Journal International, 2004,158(2):457-469.
doi: 10.1111/gji.2004.158.issue-2
[34] Dong H, Wei W, Ye G , et al. Three-dimensional electrical structure of the crust and upper mantle in Ordos Block and adjacent area: Evidence of regional lithospheric modification[J]. Geochemistry, Geophysics, Geosystems, 2014,15(6):2414-2425.
doi: 10.1002/2014GC005270
[35] Ledo J . 2-D Versus 3-D Magnetotelluric data interpretation[J]. Surveys in Geophysics, 2005,26(5):511-543.
doi: 10.1007/s10712-005-1757-8
[36] Parkinson W D . Directions of rapid geomagnetic fluctuations[J]. Geophysical Journal International, 1959,2(1):1-14.
doi: 10.1111/j.1365-246X.1959.tb05776.x
[37] Siripunvaraporn W, Egbert G . WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation[J]. Physics of the Earth & Planetary Interiors, 2009,173(3):317-329.
doi: 10.1016/j.pepi.2009.01.013
[38] Siripunvaraporn W, Egbert G, Lenbury Y , et al. Three-dimensional magnetotelluric inversion: Data-space method[J]. Physics of the Earth & Planetary Interiors, 2005,150(1):3-14.
[39] Siripunvaraporn W, Egbert G, Uyeshima M . Interpretation of two-dimensional magnetotelluric profile data with three-dimensional inversion: synthetic examples[J]. Geophysical Journal International, 2005,160(3):804-814.
doi: 10.1111/j.1365-246X.2005.02527.x
[40] Swift C M . A magnetotelluric investigation of an electrical conductivity anomaly in the SW United States[J]. Dept. of Geology and Geophysics, 1967,156(20):201-210.
[41] Tikhonov A . On determining electrical characteristics of the deep layers of the earth’s crust[J]. Sov, Math, Dokl, 1950,73(2):295-297.
[42] Yuan Y, Hu S, Wang H , et al. Meso-Cenozoic tectonothermal evolution of Ordos basin, central China: Insights from newly acquired vitrinite reflectance data and a revision of existing paleothermal indicator data[J]. Journal of Geodynamics, 2007,44(1):33-46.
doi: 10.1016/j.jog.2006.12.002
[43] 高锐, 马永生, 李秋生 , 等. 松潘地块与西秦岭造山带下地壳的性质和关系——深地震反射剖面的揭露[J]. 地质通报, 2006,25(12):1361-1367.
doi: 10.3969/j.issn.1671-2552.2006.12.003
[43] Gao R, Ma Y S, Li Q S , et al. Structur e of the lower crust beneath the Songpan block and west Qinling orogen and their relation as revealed by deep seismic reflection profiling[J]. Geological Bulletin of China, 2006,25(12):1361-1367.
[44] 高锐, 王海燕, 马永生 , 等. 松潘地块若尔盖盆地与西秦岭造山带岩石圈尺度的构造关系——深地震反射剖面探测成果[J]. 地球学报, 2006,27(5):411-418.
doi: 10.3975/cagsb.2006.05.04
[44] Gao R, Wang H Y, Ma Y S , et al. Tectonic relationships between the Zoige basin of the Song-Pan block and the west Qinling orogen at lithosphere scale: Results of deep seismic reflection profiling[J]. Acta Geoscientica Sinica, 2006,27(5):411-418.
[45] 任战利, 张盛, 高胜利 , 等. 鄂尔多斯断块构造热演化史及其成藏成矿意义[J]. 中国科学, 2007,37(1):23-32.
[45] Ren Z L, Zhang S, Gao S L , et al. Tectonic and thermal evolution history of Ordos basin and Its significance for reservoir and mineralization[J]. Scientia Sinica, 2007,37(1):23-32.
[1] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[2] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[3] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
[4] 刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
[5] 刘俊峰, 程云涛, 邓志强, 周芳春, 曹创华, 刘翔, 曾美强, 李杰, 黄志彪, 陈虎. CSAMT与AMT数据“拼接”处理——以湖南仁里铌钽矿床7号剖面为例[J]. 物探与化探, 2021, 45(1): 68-75.
[6] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[7] 张伟, 胡蕾, 张钊搏. LEMI-417型地球深部电磁场观测系统的数据格式解析[J]. 物探与化探, 2020, 44(4): 810-815.
[8] 彭炎, 张小博, 张健, 张鹏辉, 袁永真, 姜春香. 大地电磁测深法在滨北西部斜坡带油气地质调查评价中的应用[J]. 物探与化探, 2020, 44(3): 656-664.
[9] 吕琴音, 张小博, 仇根根, 王刚. 大地电磁测深首枝频点统计求平均法在连片静位移区的校正实验研究[J]. 物探与化探, 2020, 44(3): 677-684.
[10] 朱自串, 周丹, 李德文, 余润龙. 音频大地电磁测深法在老挝万象盆地钾镁盐矿产勘探中的运用效果[J]. 物探与化探, 2019, 43(6): 1268-1276.
[11] 张鹏辉, 张小博, 袁永真, 方慧, 刘建勋, 姜春香. 辽河外围北部秀水盆地大地电磁测深研究[J]. 物探与化探, 2019, 43(5): 986-996.
[12] 王长城. 大地电磁测深法用于快速评价新生代盆地盐类矿床成矿远景区的初步试验[J]. 物探与化探, 2019, 43(5): 997-1002.
[13] 朱怀亮, 胥博文, 刘志龙, 石峰, 辛玉齐, 曹学刚, 程国强. 大地电磁测深法在银川盆地地热资源调查评价中的应用[J]. 物探与化探, 2019, 43(4): 718-725.
[14] 田巍, 李旭兵, 王保忠. 大地电磁测深在湘东南坳陷页岩气勘探中的应用[J]. 物探与化探, 2019, 43(2): 281-289.
[15] 孙海川, 刘永亮, 邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探与化探, 2019, 43(2): 290-297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com