Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (5): 890-898    DOI: 10.11720/wtyht.2017.5.15
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
参数组合优化的随机边界条件及其在地震RTM中的应用
张丽美1, 成谷1, 2
1.中山大学 地球科学与工程学院,广东 广州 510275;
2.广东省地质过程与矿产资源探查重点实验室,广东 广州 510275
Parameterized random boundary condition and its application on seismic RTM
ZHANG Li-Mei1, CHENG Gu1, 2
1.School of Earth Sciences and Engineering,Sun Yat-Sen University,Guangzhou 510275,China;
2.Guangdong Key Laboratory of Geological Process and Mineral Resources Exploration,Guangzhou 510275,China
全文: PDF(762 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 地震数据叠前逆时偏移(RTM)在高精度成像中具有重要应用,但其对存储量具有极高要求。使用随机边界条件会大大降低逆时偏移的存储成本,文中以自相关函数类型、相关长度、速度扰动标准差3个参数描述的随机介质表达方式来构建参数化的随机边界,对其三参数的意义及取值进行了分析,认为指数型自相关函数、相关长度与波长接近、速度扰动标准差为30%左右为相对优化的随机边界参数组合。模型试验表明,在RTM中采用参数组合优化的随机边界条件能有效破坏人工边界反射波场的相干性,在节省存储量的同时获得较高精度的成像结果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:Pre-stack seismic reverse time migration has important application in high accuracy subsurface imaging.However enormous memory is needed in RTM.Using random boundary in RTM can reduce memory need of RTM effectively.In this paper,random media expressed by correlation function,correlation length,root mean square velocity perturbation is used,the meanings and values of parameters are analyzed and the optimal parameter group(exponential correlation function,the correlation length being equal to wave length and root mean square velocity perturbation being 30%) are obtained.Numerical simulation shows that using random boundary with optimal parameter group can destroy the coherence of artificial boundary reflection wave fields effectively and obtain high accuracy imaging result with less memory at the same time.
收稿日期: 2016-11-18      出版日期: 2017-10-20
:  P631.4  
基金资助:国家自然科学基金青年基金(41004051); 国家高技术研究发展计划(“863”计划)(2013AA092501,2013AA0925010107); 广东省自然科学基金(2016A030313311)
通讯作者: 成谷(1975-),女,副教授,主要研究方向为逆时偏移、全波形反演。Email:chenggu@mail.sysu.edu.cn
作者简介: 张丽美(1990-),女,硕士研究生,主要从事地震资料处理方法和偏移方面的研究工作。
引用本文:   
张丽美, 成谷. 参数组合优化的随机边界条件及其在地震RTM中的应用[J]. 物探与化探, 2017, 41(5): 890-898.
ZHANG Li-Mei, CHENG Gu. Parameterized random boundary condition and its application on seismic RTM. Geophysical and Geochemical Exploration, 2017, 41(5): 890-898.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.5.15      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I5/890
[1] Whitmore N D.Iterative depth migration by backward time propagation[C]//Expanded Abstracts of the 53 rd Annual SEG Meeting.Las Vegas,Nevada:Society of Exploration Geophysicists,1983:382-385.
[2] McMechan G A.Migration by extrapolation of time-dependent boundary values[J].Geophysical Prospecting,1983,31(3):413-420.
[3] Baysal E,Kosloff D D,Sherwood J W C.Reverse time migration[J].Geophysics,1983,48(11):1514-1524.
[4] Griewank A.Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation[J].Optimization Methods and software,1992,1(1):35-54.
[5] Symes W W.Reverse time migration with optimal checkpointing[J].Geophysics,2007,72(5):SM213-SM221.
[6] Gauthier O,Virieux J,Tarantola A.Two-dimensional nonlinear inversion of seismic waveforms: Numerical results[J].Geophysics,1986,51(7):1387-1403.
[7] Tan S R,Huang L J.Reducing the computer memory requirement for 3D reverse-time migration with a boundary-wavefield extrapolation method[J].Geophysics,2014,79(5):S185-S194.
[8] Clapp R G.Reverse time migration with random boundaries[C]//Expanded Abstracts of the 79 th Annual SEG Meeting.Houston,Texas:Society of Exploration Geophysicists,2009.
[9] Shen X,Clapp R G.Random boundary condition for low-frequency wave propagation[C]//Expanded Abstracts of the 81 st Annual SEG Meeting.San Antonio,Texas:Society of Exploration Geophysicists,2011,30:2962-2965.
[10] Shen X K,Clapp R G.Random boundary condition for memory-efficient waveform inversion gradient computation[J].Geophysics,2015,80(6):R351-R359.
[11] Clayton R,Engquist B.Absorbing boundary conditions for acoustic and elastic wave equations[J].Bulletin of the seismological society of America,1977,67(6):1529-1540.
[12] Cerjan C,Kosloff D,Kosloff R,et al.A nonreflecting boundary condition for discrete acoustic and elastic wave equations[J].Geophysics,1985,50(4):705-708.
[13] Berenger J P.A perfectly matched layer for the absorption of electromagnetic waves[J].Journal of computational physics,1994,114(2):185-200.
[14] 李博,刘红伟,刘国峰,等.地震叠前逆时偏移算法的CPU/GPU实施对策[J].地球物理学报,2010,12:2938-2943.
[15] 胡昊,刘伊克,常旭,等.逆时偏移计算中的边界处理分析及应用[J].地球物理学报,2013,56(6):2033-2042.
[16] 石颖,柯璇,张莹莹.逆时偏移边界条件与存储策略分析[J].地球物理学进展,2015,30(2):581-585.
[17] Shi Y,Wang Y H.Reverse time migration of 3D vertical seismic profile data[J].Geophysics,2016,81(1):S31-S38.
[18] 张慧宇,王立歆,孔祥宁,等.适于大规模数据的逆时偏移实现方案[J].物探与化探,2015,39(5):978-984.
[19] Ikelle L T,Yung S K,Daube F.2-D random media with ellipsoidal autocorrelation functions[J].Geophysics,1993,58(9):1359-1372.
[20] 奚先,姚姚.二维随机介质及波动方程正演模拟[J].石油地球物理勘探,2001,36(5):546-552.
[21] Kerner C.Anisotropy in sedimentary rocks modeled as random media[J].Geophysics,1992,57(4):564-576.
[22] Korn M.Seismic waves in random media[J].Journal of applied geophysics,1993,29(3-4):247-269.
[23] Ergintav S,Canitez N.Modeling of multi-scale media in discrete form[J].Journal of seismic exploration,1997,6(1):77-96.
[24] Flatté S M,Wu R S.Small-scale structure in the lithosphere and asthenosphere deduced from arrival time and amplitude fluctuations at NORSAR[J].Journal of Geophysical Research: Solid Earth,1988,93(B6):6601-6614.
[25] 姚姚,奚先.区域多尺度随机介质模型及其波场分析[J].石油物探,2004,43(1):1-7.
[26] 奚先,姚姚.二维横各向同性弹性随机介质中的波场特征[J].地球物理学进展,2004,19(4):924-932.
[27] 奚先,姚姚.非平稳随机介质模型[J].石油地球物理勘探,2005,40(1):71-75.
[28] 陈可洋,刘洪林,杨微,等.随机介质模型的改进方法及应用[J].大庆石油地质与开发,2008,27(5):124-126,131.
[29] 王金山,陈可洋,吴清岭,等.随机介质模型的一种构造方法[J].物探与化探,2010,34(2):191-194.
[30] 李灿苹,王南萍,李志宏.Von Karman 型自相关函数模拟随机介质[J].物探与化探,2010,34(1):98-102.
[31] 殷学鑫,刘洋.二维随机介质模型正演模拟及其波场分析[J].石油地球物理勘探,2011,46(6):862-872.
[32] Xie X B.Seismic wave scattering in 3D random media:A finite-difference simulation and slowness domain analysis[C]//Expanded Abstracts of the 83 rd Annual SEG Meeting.Houston,Texas:Society of Exploration Geophysicists,2013:3428-3432.
[33] 顾元,朱培民,李辉,等.二维叠后地震数据的平稳随机介质参数估计[J].地球物理学报,2014,57(7):2291-2301.
[34] Frankel A,Clayton R W.Finite difference simulations of seismic scattering:Implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity[J].Journal of Geophysical Research:Solid Earth,1986,91(B6):6465-6489.
[35] 吴如山.地震波散射:理论与应用[J].地球物理学进展,1989,4(4):1-23.
[36] 王保利,高静怀,陈文超,等.地震叠前逆时偏移的有效边界存储策略[J].地球物理学报,2012,55(7):2412-2421.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com